Methods Core
方法核心
基本信息
- 批准号:10475475
- 负责人:
- 金额:$ 29.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-21 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAlgorithmsAreaArtificial IntelligenceAutomobile DrivingBiomedical ResearchBiometryCharacteristicsClinicalClinical DataClinical InformaticsClinical ResearchClinical ServicesClinical TrialsCodeCohort StudiesCollaborationsCollectionCommunitiesDataData CollectionData Coordinating CenterData ScienceDevelopmentDiagnosisDiagnosticDiseaseElectronic Health RecordFosteringFoundationsFundingGoalsHealth Services ResearchHealth TechnologyHeterogeneityInformaticsInformation RetrievalInternational Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10)LeadLeadershipLearningMachine LearningMeasurementMedical ImagingMethodologyMethodsMissionModernizationMonitorMusculoskeletalMusculoskeletal DiseasesNational Institute of Arthritis and Musculoskeletal and Skin DiseasesNatural Language ProcessingObservational StudyOutcomePatient Outcomes AssessmentsPatientsPhasePhenotypePositioning AttributePreventionProceduresProcessRadiology SpecialtyRandomizedRandomized Clinical TrialsReportingReproducibilityResearchResearch DesignResearch MethodologyRoleSecureSystemTelephoneTextUnited States National Institutes of HealthUniversitiesUse EffectivenessValidationWashingtonalgorithm developmentclinical centerclinical developmentcluster trialcomparative effectivenessconvolutional neural networkdata qualitydata science infrastructuredesignelectronic structureflexibilityhealth care deliveryhigh dimensionalityimage processinginnovationlearning algorithmmHealthmachine learning methodnovelpragmatic trialquality assurancerandomized trialresearch data disseminationstatistical and machine learningstatisticstreatment effecttrial designunstructured data
项目摘要
The goal of the Methodologic Core is to support high-impact clinical research focusing on the
diagnosis, treatment, and prevention of musculoskeletal diseases. Specifically, the
Methodologic Core will provide the contemporary data science infrastructure necessary for
studies that leverage electronic health records (EHR), and for trials that collect patient reported
outcomes. We will organize around two major themes encompassing multiple activities:
confirmatory learning which includes design and analysis of observational studies and
randomized trials; and predictive learning which leverages contemporary machine learning and
artificial intelligence for processing electronic health records data and other high-dimensional
information. The data sciences are driving innovation in clinical research with the linkage of
multiple EMR systems opening new opportunities for large-scale clinical learning. Ultimately
rigorous research demands new methods for the extraction of reliable information and requires
the design of trials that can tailor to the unique characteristics of patients and the context of
health care delivery systems. The University of Washington Center for Biomedical Statistics
(CBS) has provided informatics and statistical leadership to multiple observational and
randomized studies focusing on musculoskeletal disorders and is uniquely positioned to provide
the foundation for expanded impact within the broad scope of the NIAMS mission.
方法学核心的目标是支持高影响力的临床研究,重点关注
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PATRICK J HEAGERTY其他文献
PATRICK J HEAGERTY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PATRICK J HEAGERTY', 18)}}的其他基金
Data Coordinating Center for Spinal Manipulation and Patient Self-Management for Preventing Acute to Chronic Back Pain (PACBACK)
预防急性至慢性背痛的脊柱手法和患者自我管理数据协调中心 (PACBACK)
- 批准号:
10226960 - 财政年份:2017
- 资助金额:
$ 29.9万 - 项目类别:
Data Coordinating Center for Spinal Manipulation and Patient Self-Management for Preventing Acute to Chronic Back Pain (PACBACK)
预防急性至慢性背痛的脊柱手法和患者自我管理数据协调中心 (PACBACK)
- 批准号:
10895775 - 财政年份:2017
- 资助金额:
$ 29.9万 - 项目类别:
Data Coordinating Center for Spinal Manipulation and Patient Self-Management for Preventing Acute to Chronic Back Pain (PACBACK)
预防急性至慢性背痛的脊柱手法和患者自我管理数据协调中心 (PACBACK)
- 批准号:
10460354 - 财政年份:2017
- 资助金额:
$ 29.9万 - 项目类别:
Data Coordinating Center for Spinal Manipulation and Patient Self-Management for Preventing Acute to Chronic Back Pain (PACBACK)
预防急性至慢性背痛的脊柱手法和患者自我管理数据协调中心 (PACBACK)
- 批准号:
9923235 - 财政年份:2017
- 资助金额:
$ 29.9万 - 项目类别:
High-dose Erythropoietin for Asphyxia and Encephalopathy (HEAL) DCC
高剂量促红细胞生成素治疗窒息和脑病 (HEAL) DCC
- 批准号:
9174290 - 财政年份:2016
- 资助金额:
$ 29.9万 - 项目类别:
High-dose Erythropoietin for Asphyxia and Encephalopathy (HEAL) DCC
高剂量促红细胞生成素治疗窒息和脑病 (HEAL) DCC
- 批准号:
9355476 - 财政年份:2016
- 资助金额:
$ 29.9万 - 项目类别:
Preterm Epo Neuroprotection Trial (PENUT Trial) DCC
早产儿 Epo 神经保护试验(PENUT 试验)DCC
- 批准号:
8773752 - 财政年份:2013
- 资助金额:
$ 29.9万 - 项目类别:
Preterm Epo Neuroprotection Trial (PENUT Trial) DCC
早产儿 Epo 神经保护试验(PENUT 试验)DCC
- 批准号:
8497375 - 财政年份:2013
- 资助金额:
$ 29.9万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 29.9万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 29.9万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 29.9万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 29.9万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 29.9万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 29.9万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 29.9万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant














{{item.name}}会员




