Developing branch stress microscopy for the mechanobiology of 3D morphogenesis and invasive diseases
开发用于 3D 形态发生和侵袭性疾病的机械生物学的分支应力显微镜
基本信息
- 批准号:10710186
- 负责人:
- 金额:$ 19.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-28 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAnimal ModelBiochemicalBiologicalBiological ModelsBiologyBiomedical EngineeringCancer ModelCell CommunicationCellsCommunitiesComplexComputer ModelsComputer softwareConfocal MicroscopyDevelopmentDevelopmental BiologyDiseaseElasticityEngineeringEnvironmentEquationEquilibriumEvaluationExtracellular MatrixFibroblast Growth FactorFinite Element AnalysisFoundationsFutureGlandIn VitroInvadedKidneyKnowledgeLiquid substanceLungMalignant NeoplasmsMammary glandMapsMeasurementMeasuresMechanical StressMechanicsMethodsMicroscopyModelingMolecularMorphogenesisMorphologyOrganOutcomeOutputPathogenesisPathway interactionsPatternPerformancePlayPositioning AttributeProceduresProcessProliferatingPropertyRegenerative MedicineResourcesRewardsRiskRisk ManagementRoleSeriesShapesSignal PathwaySignal TransductionSiteSolidSomatotropinStressStructureTechniquesTechnologyTissuesTractionTraction Force MicroscopyWidthWorkangiogenesisdesigndevelopmental diseaseexperimental studyhuman diseasein silicoin vivoinsightinterestmechanical forcemechanical signalmechanotransductionmigrationnovelregenerative treatmentspatiotemporaltechnology developmentthree-dimensional modelingtooltransmission processtumor
项目摘要
PROJECT SUMMARY/ABSTRACT
Branched structures are essential for the formation of many organs and glands during development. In addition,
many invasive diseases including abnormal angiogenesis and collective cancer invasion also take the form of
branches. Hence, understanding the mechanism underlying the patterning and morphogenesis of branches is of
critical importance in both fundamental biology of development and treatment of human diseases. Branching
processes, including the elongation, bifurcation, and termination of the branches, can be regulated by
biochemical signals, such as fibroblast growth factors and hormones. Recent work also suggests that mechanical
signals from the extracellular matrix and from neighboring cells also influence branching dynamics. However,
likely due to the lack of quantitative tools that can measure the distribution of mechanical forces within the
branches, how mechanics regulates the branching process is still not well understood. In this project, we propose
to develop a novel quantitative tool, termed branch stress microscopy (BSM), that can precisely map the
spatiotemporal distribution of intercellular mechanical stresses during the branching process. Even with
significant developments in cell and tissue mechanics over the past decades, quantifying intercellular mechanical
stresses within a three-dimensional space remains a challenging task. Hence, to manage the risk, the proposed
project is designed with two progressively riskier and more rewarding aims. In Aim 1, we will develop a relatively
simple 1D version of BSM that quantifies the cross-sectional stress along a morphogenetic branch. Confocal
microscopy will be combined with a three-dimensional traction stress calculation to obtain the total force and
average stress exerted at the cross section via force balance equations. We will then validate the stress
calculated from 1D BSM against that from the current state of the art using 3D cancer collective migration as a
biological model. In Aim 2, we will take one step further to develop a 3D version of BSM to resolve the complete
3D distribution of intercellular stresses within a branch segment. We will make necessary measurements and
assumptions regarding the branch material properties and stress or displacement values at the boundary of the
branch segment and turn the task into a boundary value problem in solid mechanics. We will then calculate the
stress distribution within invading cancer branches using finite element analysis and validate the assumptions
and the robustness of the tool by comparing with the stresses measured by the current state of the art. In sum,
this project will combine in silico and in vitro engineering and biological approaches to develop a novel
quantitative tool that may be widely applicable to any branching processes in vitro, ex vivo and even in vivo, thus
providing a versatile technology for branching mechanobiology in development and diseases.
项目摘要/摘要
在发育过程中,分支结构对于许多器官和腺体的形成是必不可少的。此外,
许多侵袭性疾病,包括异常血管生成和集体癌症侵袭,也以
树枝。因此,了解树枝形成模式和形态发生的潜在机制是
在人类疾病的发展和治疗的基础生物学方面都具有至关重要的意义。分支
过程,包括枝条的伸长、分叉和终止,可以通过
生化信号,如成纤维细胞生长因子和激素。最近的研究还表明,机械
来自细胞外基质和邻近细胞的信号也影响分支动力学。然而,
很可能是由于缺乏量化工具来测量机械力在内部的分布
对于树枝,机械如何调节树枝的过程仍然不是很清楚。在这个项目中,我们建议
为了开发一种新的定量工具,称为分支应力显微镜(BSM),它可以精确地绘制出
分枝过程中细胞间机械应力的时空分布。即使是在
细胞和组织力学在过去几十年中的重大发展,量化了细胞间的力学
三维空间中的压力仍然是一项具有挑战性的任务。因此,为了管理风险,建议的
该项目的设计有两个逐步风险和更有回报的目标。在目标1中,我们将开发一种相对
BSM的简单一维版本,它量化了沿形态发生分支的横截面应力。共焦
将显微镜与三维牵引应力计算相结合,得到总力和
通过力平衡方程在横截面上施加的平均应力。然后我们将验证压力
根据1D BSM与使用3D癌症集体迁移作为
生物模型。在目标2中,我们将进一步开发3D版本的BSM,以解决完整的
分支节段内细胞间应力的三维分布。我们将进行必要的测量和
关于分支材料属性和边界处的应力或位移值的假设
分支分段,并将任务转化为固体力学中的边值问题。然后,我们将计算
肿瘤侵袭分支内应力分布的有限元分析及假设验证
并通过与由当前技术状态测量的应力进行比较来确定工具的坚固性。总而言之,
该项目将结合硅学和体外工程以及生物学方法来开发一种新的
可广泛适用于体外、体外甚至体内任何分支过程的定量工具,因此
为发育和疾病中的机械生物学分支提供通用技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cynthia A. Reinhart-King其他文献
Engineered models to parse apart the metastatic cascade
设计模型来解析转移级联
- DOI:
10.1038/s41698-019-0092-3 - 发表时间:
2019-08-21 - 期刊:
- 影响因子:8.000
- 作者:
Lauren A. Hapach;Jenna A. Mosier;Wenjun Wang;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
Cell–Cell Mechanical Communication in Cancer
- DOI:
10.1007/s12195-018-00564-x - 发表时间:
2018-12-07 - 期刊:
- 影响因子:5.000
- 作者:
Samantha C. Schwager;Paul V. Taufalele;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
Cancer cell metabolic plasticity in migration and metastasis
- DOI:
10.1007/s10585-021-10102-1 - 发表时间:
2021-06-02 - 期刊:
- 影响因子:3.200
- 作者:
Jenna A. Mosier;Samantha C. Schwager;David A. Boyajian;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
The movement of mitochondria in breast cancer: internal motility and intercellular transfer of mitochondria
- DOI:
10.1007/s10585-024-10269-3 - 发表时间:
2024-03-15 - 期刊:
- 影响因子:3.200
- 作者:
Sarah Libring;Emily D. Berestesky;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
Matrix Stiffness-Mediated DNA Methylation in Endothelial Cells
- DOI:
10.1007/s12195-024-00836-9 - 发表时间:
2025-01-17 - 期刊:
- 影响因子:5.000
- 作者:
Paul V. Taufalele;Hannah K. Kirkham;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
Cynthia A. Reinhart-King的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cynthia A. Reinhart-King', 18)}}的其他基金
Sorting and characterization of cancer cells based on metabolic phenotype
基于代谢表型的癌细胞分选和表征
- 批准号:
10467279 - 财政年份:2022
- 资助金额:
$ 19.06万 - 项目类别:
Developing branch stress microscopy for the mechanobiology of 3D morphogenesis and invasive diseases
开发用于 3D 形态发生和侵袭性疾病的机械生物学的分支应力显微镜
- 批准号:
10539600 - 财政年份:2022
- 资助金额:
$ 19.06万 - 项目类别:
Sorting and characterization of cancer cells based on metabolic phenotype
基于代谢表型的癌细胞分选和表征
- 批准号:
10590648 - 财政年份:2022
- 资助金额:
$ 19.06万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 19.06万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 19.06万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 19.06万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 19.06万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 19.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 19.06万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 19.06万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 19.06万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 19.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 19.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




