Developing branch stress microscopy for the mechanobiology of 3D morphogenesis and invasive diseases

开发用于 3D 形态发生和侵袭性疾病的机械生物学的分支应力显微镜

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Branched structures are essential for the formation of many organs and glands during development. In addition, many invasive diseases including abnormal angiogenesis and collective cancer invasion also take the form of branches. Hence, understanding the mechanism underlying the patterning and morphogenesis of branches is of critical importance in both fundamental biology of development and treatment of human diseases. Branching processes, including the elongation, bifurcation, and termination of the branches, can be regulated by biochemical signals, such as fibroblast growth factors and hormones. Recent work also suggests that mechanical signals from the extracellular matrix and from neighboring cells also influence branching dynamics. However, likely due to the lack of quantitative tools that can measure the distribution of mechanical forces within the branches, how mechanics regulates the branching process is still not well understood. In this project, we propose to develop a novel quantitative tool, termed branch stress microscopy (BSM), that can precisely map the spatiotemporal distribution of intercellular mechanical stresses during the branching process. Even with significant developments in cell and tissue mechanics over the past decades, quantifying intercellular mechanical stresses within a three-dimensional space remains a challenging task. Hence, to manage the risk, the proposed project is designed with two progressively riskier and more rewarding aims. In Aim 1, we will develop a relatively simple 1D version of BSM that quantifies the cross-sectional stress along a morphogenetic branch. Confocal microscopy will be combined with a three-dimensional traction stress calculation to obtain the total force and average stress exerted at the cross section via force balance equations. We will then validate the stress calculated from 1D BSM against that from the current state of the art using 3D cancer collective migration as a biological model. In Aim 2, we will take one step further to develop a 3D version of BSM to resolve the complete 3D distribution of intercellular stresses within a branch segment. We will make necessary measurements and assumptions regarding the branch material properties and stress or displacement values at the boundary of the branch segment and turn the task into a boundary value problem in solid mechanics. We will then calculate the stress distribution within invading cancer branches using finite element analysis and validate the assumptions and the robustness of the tool by comparing with the stresses measured by the current state of the art. In sum, this project will combine in silico and in vitro engineering and biological approaches to develop a novel quantitative tool that may be widely applicable to any branching processes in vitro, ex vivo and even in vivo, thus providing a versatile technology for branching mechanobiology in development and diseases.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cynthia A. Reinhart-King其他文献

Engineered models to parse apart the metastatic cascade
设计模型来解析转移级联
  • DOI:
    10.1038/s41698-019-0092-3
  • 发表时间:
    2019-08-21
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Lauren A. Hapach;Jenna A. Mosier;Wenjun Wang;Cynthia A. Reinhart-King
  • 通讯作者:
    Cynthia A. Reinhart-King
Cell–Cell Mechanical Communication in Cancer
  • DOI:
    10.1007/s12195-018-00564-x
  • 发表时间:
    2018-12-07
  • 期刊:
  • 影响因子:
    5.000
  • 作者:
    Samantha C. Schwager;Paul V. Taufalele;Cynthia A. Reinhart-King
  • 通讯作者:
    Cynthia A. Reinhart-King
Cancer cell metabolic plasticity in migration and metastasis
  • DOI:
    10.1007/s10585-021-10102-1
  • 发表时间:
    2021-06-02
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Jenna A. Mosier;Samantha C. Schwager;David A. Boyajian;Cynthia A. Reinhart-King
  • 通讯作者:
    Cynthia A. Reinhart-King
The movement of mitochondria in breast cancer: internal motility and intercellular transfer of mitochondria
  • DOI:
    10.1007/s10585-024-10269-3
  • 发表时间:
    2024-03-15
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Sarah Libring;Emily D. Berestesky;Cynthia A. Reinhart-King
  • 通讯作者:
    Cynthia A. Reinhart-King
Matrix Stiffness-Mediated DNA Methylation in Endothelial Cells
  • DOI:
    10.1007/s12195-024-00836-9
  • 发表时间:
    2025-01-17
  • 期刊:
  • 影响因子:
    5.000
  • 作者:
    Paul V. Taufalele;Hannah K. Kirkham;Cynthia A. Reinhart-King
  • 通讯作者:
    Cynthia A. Reinhart-King

Cynthia A. Reinhart-King的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cynthia A. Reinhart-King', 18)}}的其他基金

Sorting and characterization of cancer cells based on metabolic phenotype
基于代谢表型的癌细胞分选和表征
  • 批准号:
    10467279
  • 财政年份:
    2022
  • 资助金额:
    $ 19.06万
  • 项目类别:
Developing branch stress microscopy for the mechanobiology of 3D morphogenesis and invasive diseases
开发用于 3D 形态发生和侵袭性疾病的机械生物学的分支应力显微镜
  • 批准号:
    10539600
  • 财政年份:
    2022
  • 资助金额:
    $ 19.06万
  • 项目类别:
Sorting and characterization of cancer cells based on metabolic phenotype
基于代谢表型的癌细胞分选和表征
  • 批准号:
    10590648
  • 财政年份:
    2022
  • 资助金额:
    $ 19.06万
  • 项目类别:
Molecular Determinants of Confined Migration
限制迁移的分子决定因素
  • 批准号:
    10386588
  • 财政年份:
    2019
  • 资助金额:
    $ 19.06万
  • 项目类别:
Molecular Determinants of Confined Migration
限制迁移的分子决定因素
  • 批准号:
    10204600
  • 财政年份:
    2019
  • 资助金额:
    $ 19.06万
  • 项目类别:
Molecular Determinants of Confined Migration
限制迁移的分子决定因素
  • 批准号:
    10556661
  • 财政年份:
    2019
  • 资助金额:
    $ 19.06万
  • 项目类别:
Molecular Determinants of Confined Migration
限制迁移的分子决定因素
  • 批准号:
    10361418
  • 财政年份:
    2019
  • 资助金额:
    $ 19.06万
  • 项目类别:
Mechanical Regulation of Tumor Angiogenesis
肿瘤血管生成的机械调节
  • 批准号:
    9471682
  • 财政年份:
    2015
  • 资助金额:
    $ 19.06万
  • 项目类别:
Mechanical Regulation of Tumor Angiogenesis
肿瘤血管生成的机械调节
  • 批准号:
    9043946
  • 财政年份:
    2015
  • 资助金额:
    $ 19.06万
  • 项目类别:
Mechanical Regulation of Tumor Angiogenesis
肿瘤血管生成的机械调节
  • 批准号:
    9281372
  • 财政年份:
    2015
  • 资助金额:
    $ 19.06万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 19.06万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 19.06万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 19.06万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 19.06万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 19.06万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 19.06万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 19.06万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了