Sorting and characterization of cancer cells based on metabolic phenotype
基于代谢表型的癌细胞分选和表征
基本信息
- 批准号:10467279
- 负责人:
- 金额:$ 22.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:BiologicalBiosensorBlood CirculationBreastBreast Cancer CellBreast Cancer cell lineBreast cancer metastasisCancer InterventionCell ProliferationCell SeparationCell physiologyCellsCellular Metabolic ProcessChemicalsCoupledDataDependenceEngineeringExhibitsFlow CytometryFluorescence-Activated Cell SortingFluorescent ProbesFoundationsFutureGenerationsGenetic HeterogeneityGlycolysisGoalsHeterogeneityIn VitroIndividualKnowledgeLabelLeadMalignant NeoplasmsMetabolicMetabolic PathwayMetabolismMetastatic breast cancerMetastatic toMethodsMicroscopyMitochondriaMolecularNADHNeoplasm MetastasisOrganOutcomeOutputOxidation-ReductionOxidative PhosphorylationOxygenPathway interactionsPhenotypePlayPrimary NeoplasmProteinsPyruvateReportingResearchRoleSiteSorting - Cell MovementSubgroupSuspensionsSystemTestingTherapeutic InterventionTimeWorkbasecancer cellcell motilitydesignin vivoinhibitorinnovationinterestmetabolic phenotypemetabolic profilemouse modelnovelphotoactivationtherapeutic targettherapy resistanttooltranscriptomicstumor microenvironmenttumor progression
项目摘要
PROJECT SUMMARY/ABSTRACT
Altered metabolism is a hallmark of cancer, and therapeutic intervention of this altered feature is emerging and
holds significant potential. Recent work has found that breast cancer cells exhibit dramatic differences in their
glycolysis versus oxidative phosphorylation (OXPHOS) metabolic phenotype within the primary tumor and
metastases, and between metastases at different organs. This heterogeneity in metabolic phenotype may be a
result of genetic heterogeneity or cellular plasticity and metabolic adaptation to the local microenvironment.
Metabolic heterogeneity and plasticity may contribute to therapeutic resistance to treatments that target a specific
metabolic pathway. The field generally believes that cellular metabolic adaptation and plasticity facilitate their
survival and colonization during metastasis. However, it not clear whether a change in metabolic phenotype in
the primary tumor can predict metastatic outcome. In this project, we propose to phenotypically sort breast cancer
cells into subpopulations with distinct glycolysis or OXPHOS phenotypes, and use these sorted subpopulations
to test the hypothesis that the initial metabolic phenotype and heterogeneity determine the metastatic outcome
against the alternative hypothesis that metabolic adaptation to the local microenvironment and phenotypical
switching contribute to metastatic outcome regardless of the initial metabolic heterogeneity. By expressing a
fluorescent biosensor in the cells for cellular glycolysis versus OXPHOS reliance, we have obtained preliminary
data supporting the feasibility of cell sorting based on this metabolic feature. In Aim 1, we will optimize the
engineering approach for cell sorting based on cellular metabolic phenotype. Fluorescence-activated cell sorting
(FACS) will be coupled with metabolic biosensors, and automated microscopy, photoactivation and fluorescent
labeling of cells for cell separation. In Aim 2, we will use the sorted metabolic subpopulations to test our overall
hypotheses in vitro and in vivo that initial metabolic phenotype predicts metastatic outcome. Engineered systems
mimicking the environmental conditions at the primary and secondary sites, and in circulation will be designed
to characterize cell migration, proliferation, and survival of the subpopulations, as well as their metabolic
adaptation. We will examine the metastatic potential of these subpopulations in a mouse model and determine
their metabolic adaptations at different stages along the metastatic cascade. The innovative aspects of this
proposal are the concept to sort by metabolic phenotype and the goal of uncovering the role of initial metabolic
phenotype in the broader metastatic cascade. This project will use the novel engineered cell sorting approach to
dissect the respective roles of metabolic heterogeneity and adaptability in breast cancer metastasis, thus laying
the foundation for future work to identify the key molecular pathways to precisely target for cancer metabolic
therapy.
项目总结/摘要
代谢改变是癌症的标志,对这种改变特征的治疗干预正在出现,
拥有巨大的潜力最近的研究发现,乳腺癌细胞在它们的
糖酵解与氧化磷酸化(OXPHOS)代谢表型在原发性肿瘤,
转移,以及不同器官的转移之间。这种代谢表型的异质性可能是一种
遗传异质性或细胞可塑性和代谢适应局部微环境的结果。
代谢的异质性和可塑性可能导致对靶向特定代谢物的治疗的治疗抗性。
代谢途径该领域通常认为,细胞代谢适应性和可塑性促进了它们的生长。
转移期间的存活和定殖。然而,目前尚不清楚是否代谢表型的变化,
原发肿瘤可以预测转移结果。在这个项目中,我们建议对乳腺癌进行表型分类,
细胞分成具有不同糖酵解或OXPHOS表型的亚群,并使用这些分选的亚群
为了检验初始代谢表型和异质性决定转移结果的假设,
反对另一种假设,即代谢适应当地的微环境和表型
无论初始代谢异质性如何,转换都有助于转移结果。通过表达
荧光生物传感器在细胞中的细胞糖酵解与OXPHOS的依赖,我们已经获得了初步的
支持基于该代谢特征的细胞分选的可行性的数据。在目标1中,我们将优化
基于细胞代谢表型的细胞分选的工程方法。荧光激活细胞分选
(流式细胞仪)将与代谢生物传感器,自动显微镜,光活化和荧光
标记细胞以进行细胞分离。在目标2中,我们将使用排序的代谢亚群来测试我们的总体
体外和体内初步代谢表型预测转移结果假说。工程系统
模仿在主要和次要网站的环境条件,并在流通将被设计
表征亚群的细胞迁移、增殖和存活,以及它们的代谢
适应。我们将在小鼠模型中检查这些亚群的转移潜力,
它们在转移级联反应的沿着不同阶段的代谢适应。创新的方面,
建议是按代谢表型分类的概念和揭示初始代谢表型的作用的目标。
表型在更广泛的转移级联。该项目将使用新的工程细胞分选方法,
剖析代谢异质性和适应性在乳腺癌转移中的各自作用,
为未来确定精确靶向癌症代谢的关键分子途径的工作奠定基础
疗法
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cynthia A. Reinhart-King其他文献
Engineered models to parse apart the metastatic cascade
设计模型来解析转移级联
- DOI:
10.1038/s41698-019-0092-3 - 发表时间:
2019-08-21 - 期刊:
- 影响因子:8.000
- 作者:
Lauren A. Hapach;Jenna A. Mosier;Wenjun Wang;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
Cell–Cell Mechanical Communication in Cancer
- DOI:
10.1007/s12195-018-00564-x - 发表时间:
2018-12-07 - 期刊:
- 影响因子:5.000
- 作者:
Samantha C. Schwager;Paul V. Taufalele;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
Cancer cell metabolic plasticity in migration and metastasis
- DOI:
10.1007/s10585-021-10102-1 - 发表时间:
2021-06-02 - 期刊:
- 影响因子:3.200
- 作者:
Jenna A. Mosier;Samantha C. Schwager;David A. Boyajian;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
The movement of mitochondria in breast cancer: internal motility and intercellular transfer of mitochondria
- DOI:
10.1007/s10585-024-10269-3 - 发表时间:
2024-03-15 - 期刊:
- 影响因子:3.200
- 作者:
Sarah Libring;Emily D. Berestesky;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
Matrix Stiffness-Mediated DNA Methylation in Endothelial Cells
- DOI:
10.1007/s12195-024-00836-9 - 发表时间:
2025-01-17 - 期刊:
- 影响因子:5.000
- 作者:
Paul V. Taufalele;Hannah K. Kirkham;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
Cynthia A. Reinhart-King的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cynthia A. Reinhart-King', 18)}}的其他基金
Developing branch stress microscopy for the mechanobiology of 3D morphogenesis and invasive diseases
开发用于 3D 形态发生和侵袭性疾病的机械生物学的分支应力显微镜
- 批准号:
10539600 - 财政年份:2022
- 资助金额:
$ 22.23万 - 项目类别:
Developing branch stress microscopy for the mechanobiology of 3D morphogenesis and invasive diseases
开发用于 3D 形态发生和侵袭性疾病的机械生物学的分支应力显微镜
- 批准号:
10710186 - 财政年份:2022
- 资助金额:
$ 22.23万 - 项目类别:
Sorting and characterization of cancer cells based on metabolic phenotype
基于代谢表型的癌细胞分选和表征
- 批准号:
10590648 - 财政年份:2022
- 资助金额:
$ 22.23万 - 项目类别:
相似国自然基金
NAD+/NADH Biosensor “智能”调控好氧/厌氧耦合供给NADH产氢研究
- 批准号:31970038
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 22.23万 - 项目类别:
Studentship
EAGER SENTINELS: The PCR-free Biosensor for a Fast, Simple, and Sensitive Detection of RNA.
EAGER SENTINELS:无需 PCR 的生物传感器,可快速、简单且灵敏地检测 RNA。
- 批准号:
2415037 - 财政年份:2024
- 资助金额:
$ 22.23万 - 项目类别:
Standard Grant
Targeted pathogen-specific nanomaterials for delivery and biosensor applications within plants
用于植物内递送和生物传感器应用的靶向病原体特异性纳米材料
- 批准号:
24K17831 - 财政年份:2024
- 资助金额:
$ 22.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Enhancing Biosensor Surface Functionalization for new applications in Drug Development & Production
增强生物传感器表面功能化以实现药物开发的新应用
- 批准号:
10090247 - 财政年份:2024
- 资助金额:
$ 22.23万 - 项目类别:
Collaborative R&D
SBIR Phase II: Novel progesterone biosensor for monitoring fertility health
SBIR II 期:用于监测生育健康的新型黄体酮生物传感器
- 批准号:
2341568 - 财政年份:2024
- 资助金额:
$ 22.23万 - 项目类别:
Cooperative Agreement
Developing a fluorescence lifetime-based GTP biosensor for investigating cellular energy metabolism
开发基于荧光寿命的 GTP 生物传感器来研究细胞能量代谢
- 批准号:
24K17780 - 财政年份:2024
- 资助金额:
$ 22.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Upconversion nanoparticle-based optical biosensor for early diagnosis of stroke
基于上转换纳米粒子的光学生物传感器用于中风的早期诊断
- 批准号:
MR/Y503460/1 - 财政年份:2024
- 资助金额:
$ 22.23万 - 项目类别:
Research Grant
Portable biosensor for rapid detection of viral contamination in food
用于快速检测食品中病毒污染的便携式生物传感器
- 批准号:
LP230100108 - 财政年份:2024
- 资助金额:
$ 22.23万 - 项目类别:
Linkage Projects
Bacterial-based Biosensor Digital Twin for Microbial Community Sensing (US-Ireland-R&D Partnership)
用于微生物群落感知的基于细菌的生物传感器数字孪生(美国-爱尔兰-R
- 批准号:
2316960 - 财政年份:2023
- 资助金额:
$ 22.23万 - 项目类别:
Standard Grant
Eleprep: Developing a Modular Electrochemical-Microfluidic Biosensor for Simultaneous Detection of Seven Foodborne Pathogens
Eleprep:开发模块化电化学微流体生物传感器,用于同时检测七种食源性病原体
- 批准号:
23K19227 - 财政年份:2023
- 资助金额:
$ 22.23万 - 项目类别:
Grant-in-Aid for Research Activity Start-up