Molecular Determinants of Confined Migration
限制迁移的分子决定因素
基本信息
- 批准号:10361418
- 负责人:
- 金额:$ 31.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATP Synthesis PathwayActinsAddressAdhesionsAdhesivesAffectAnatomyArchitectureAutomobile DrivingBehaviorBiological AssayBiosensorCell AdhesionCell EnergeticsCell-Matrix JunctionCellsCellular Metabolic ProcessChemicalsCollagenComplexConfined SpacesCoupledCytoskeletonDataDecision MakingDevelopmentDiseaseEngineeringEnvironmentEquilibriumEventExtracellular MatrixFluorescence Resonance Energy TransferFocal AdhesionsFoundationsGelHeterogeneityImageImmune responseIn VitroIndividualInterventionMatrix MetalloproteinasesMeasurementMechanicsMediatingMetabolicMetabolic PathwayMetabolismMetastatic toMicrofabricationModelingMoldsMolecularMonitorMotionMovementNatural ProductsNeoplasm MetastasisNutrientOrganPatternPharmacologyPhysiologicalPlayPopulationProcessPublishingResearchRoleShapesSiteStructureSystemTalinTechniquesTissuesVinculinWorkbasecell motilitycellular imagingchemical propertycostdesign and constructionin vitro Modelin vivointerstitialmechanical propertiesmigrationmutantnew therapeutic targetnoveloptogeneticsrho GTP-Binding Proteinstherapeutic targettransmission processtumor
项目摘要
Project Summary: In numerous processes including development and metastasis, cells can move in
microtracks within the 3D microenvironment. These microtracks are formed by cells themselves through the use
of matrix metalloproteinases that degrade matrix, or microtracks can exist as a product of the natural architecture
of organs. While microtrack migration occurs in vivo, little is known about the specific mechanisms that cells
employ to move in microtracks. We have developed a unique platform using microfabrication to recreate these
microtracks in vitro by micromolding collagen. Microtracks can be made in various sizes, and they can be
patterned into multiple different shapes including tapered channels and bifurcated channels. Our microfabricated
microtracks are structurally indistinguishable from tracks found in vitro and in vivo. Moreover, they offer a distinct
advantage over other PDMS-based platforms because the collagen is amenable to cell adhesion on all 4 walls
of the track, the fibrous walls of the microtrack can be deformed by cells, and the tracks more closely mimic the
mechanical and chemical properties found in vivo. Importantly, our work to-date has shown that the mechanisms
driving movement in microtracks are not the same as those mediating cell migration on 2D substrates or in
unmolded collagen. Here, we propose to build upon two of our major prior findings, which are that: 1. Vinculin
is required for microtrack movement, 2. Cellular confinement alters migration and correlates with cell metabolism.
Using this novel microtrack platform in concert with engineered probes to monitor adhesion and cellular energy,
optogenetic probes to alter cell contractility and cellular protrusions, and novel force measurement techniques,
we will investigate the molecular mechanisms driving cell migration and decision-making during migration in
microtracks with a focus on adhesion dynamics and cellular energetics. In Aim 1, we investigate the role of focal
adhesion dynamics and tension, focusing on vinculin-talin-actin interactions based on our preliminary showing
vinculin mediates unidirectional motion. We will investigate the linkage between vinculin, talin and actin, and we
will probe the force transmission occurring at the sites of cell-matrix adhesion. In Aim 2, we will investigate how
cellular energetics and the availability of nutrients affects migration and migration decisions in confined spaces.
Based on our prior work indicating that the extracellular matrix structure alters ATP utilization, we hypothesize
that increased confinement will increase the energetic needs of the cell. In Aim 3, we will investigate the
molecular and mechanical mechanisms governing cell migration decisions. Constructs designed to disrupt force
transmission between the cell and the matrix and pharmacological interventions will be used to assess the effects
of cell contractility and cell stiffness on cellular energy utilization, adhesion, and migration direction decisions in
microtracks. Our understanding of metabolism is rapidly developing, and as such, therapeutics targeting
metabolic pathways are emerging. Connecting migration behaviors to metabolism offers a potential new point of
intervention in disease.
在包括发育和转移在内的许多过程中,细胞可以移动
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cynthia A. Reinhart-King其他文献
Engineered models to parse apart the metastatic cascade
设计模型来解析转移级联
- DOI:
10.1038/s41698-019-0092-3 - 发表时间:
2019-08-21 - 期刊:
- 影响因子:8.000
- 作者:
Lauren A. Hapach;Jenna A. Mosier;Wenjun Wang;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
Cell–Cell Mechanical Communication in Cancer
- DOI:
10.1007/s12195-018-00564-x - 发表时间:
2018-12-07 - 期刊:
- 影响因子:5.000
- 作者:
Samantha C. Schwager;Paul V. Taufalele;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
The movement of mitochondria in breast cancer: internal motility and intercellular transfer of mitochondria
- DOI:
10.1007/s10585-024-10269-3 - 发表时间:
2024-03-15 - 期刊:
- 影响因子:3.200
- 作者:
Sarah Libring;Emily D. Berestesky;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
Cancer cell metabolic plasticity in migration and metastasis
- DOI:
10.1007/s10585-021-10102-1 - 发表时间:
2021-06-02 - 期刊:
- 影响因子:3.200
- 作者:
Jenna A. Mosier;Samantha C. Schwager;David A. Boyajian;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
Matrix Stiffness-Mediated DNA Methylation in Endothelial Cells
- DOI:
10.1007/s12195-024-00836-9 - 发表时间:
2025-01-17 - 期刊:
- 影响因子:5.000
- 作者:
Paul V. Taufalele;Hannah K. Kirkham;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
Cynthia A. Reinhart-King的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cynthia A. Reinhart-King', 18)}}的其他基金
Sorting and characterization of cancer cells based on metabolic phenotype
基于代谢表型的癌细胞分选和表征
- 批准号:
10467279 - 财政年份:2022
- 资助金额:
$ 31.4万 - 项目类别:
Developing branch stress microscopy for the mechanobiology of 3D morphogenesis and invasive diseases
开发用于 3D 形态发生和侵袭性疾病的机械生物学的分支应力显微镜
- 批准号:
10539600 - 财政年份:2022
- 资助金额:
$ 31.4万 - 项目类别:
Developing branch stress microscopy for the mechanobiology of 3D morphogenesis and invasive diseases
开发用于 3D 形态发生和侵袭性疾病的机械生物学的分支应力显微镜
- 批准号:
10710186 - 财政年份:2022
- 资助金额:
$ 31.4万 - 项目类别:
Sorting and characterization of cancer cells based on metabolic phenotype
基于代谢表型的癌细胞分选和表征
- 批准号:
10590648 - 财政年份:2022
- 资助金额:
$ 31.4万 - 项目类别:














{{item.name}}会员




