Molecular Determinants of Confined Migration
限制迁移的分子决定因素
基本信息
- 批准号:10386588
- 负责人:
- 金额:$ 18.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActinsAdhesionsAffectAnatomyArchitectureAutomobile DrivingBehaviorCell AdhesionCell-Matrix JunctionCellsCellular Metabolic ProcessChemicalsCollagenConfined SpacesDecision MakingDevelopmentDiseaseEngineeringExtracellular MatrixFocal AdhesionsImmune responseIn VitroInterventionMatrix MetalloproteinasesMeasurementMechanicsMediatingMetabolic PathwayMetabolismMicrofabricationMoldsMolecularMonitorMotionMovementNatural ProductsNeoplasm MetastasisNutrientOrganPatternPharmacologyProcessRoleShapesSiteStructureSystemTalinTechniquesTissuesVinculinWorkbasecell motilitychemical propertydesign and constructionin vivomechanical propertiesmigrationnoveloptogeneticstherapeutic targettransmission process
项目摘要
PROJECT SUMMARY/ABSTRACT
In numerous processes including development and metastasis, cells can move in microtracks within the 3D
microenvironment. These microtracks are formed by cells themselves through the use of matrix
metalloproteinases that degrade matrix, or microtracks can exist as a product of the natural architecture of
organs. While microtrack migration occurs in vivo, little is known about the specific mechanisms that cells employ
to move in microtracks. We have developed a unique platform using microfabrication to recreate these
microtracks in vitro by micromolding collagen. Microtracks can be made in various sizes, and they can be
patterned into multiple different shapes including tapered channels and bifurcated channels. Our microfabricated
microtracks are structurally indistinguishable from tracks found in vitro and in vivo. Moreover, they offer a distinct
advantage over other PDMS-based platforms because the collagen is amenable to cell adhesion on all 4 walls
of the track, the fibrous walls of the microtrack can be deformed by cells, and the tracks more closely mimic the
mechanical and chemical properties found in vivo. Importantly, our work to-date has shown that the mechanisms
driving movement in microtracks are not the same as those mediating cell migration on 2D substrates or in
unmolded collagen. Here, we propose to build upon two of our major prior findings, which are that: 1. Vinculin is
required for microtrack movement, 2. Cellular confinement alters migration and correlates with cell metabolism.
Using this novel microtrack platform in concert with engineered probes to monitor adhesion and cellular energy,
optogenetic probes to alter cell contractility and cellular protrusions, and novel force measurement techniques,
we will investigate the molecular mechanisms driving cell migration and decision-making during migration in
microtracks with a focus on adhesion dynamics and cellular energetics. In Aim 1, we investigate the role of focal
adhesion dynamics and tension, focusing on vinculin-talin-actin interactions based on our preliminary showing
vinculin mediates unidirectional motion. We will investigate the linkage between vinculin, talin and actin, and we
will probe the force transmission occurring at the sites of cell-matrix adhesion. In Aim 2, we will investigate how
cellular energetics and the availability of nutrients affects migration and migration decisions in confined spaces.
Based on our prior work indicating that the extracellular matrix structure alters ATP utilization, we hypothesize
that increased confinement will increase the energetic needs of the cell. In Aim 3, we will investigate the
molecular and mechanical mechanisms governing cell migration decisions. Constructs designed to disrupt force
transmission between the cell and the matrix and pharmacological interventions will be used to assess the effects
of cell contractility and cell stiffness on cellular energy utilization, adhesion, and migration direction decisions in
microtracks. Our understanding of metabolism is rapidly developing, and as such, therapeutics targeting
metabolic pathways are emerging. Connecting migration behaviors to metabolism offers a potential new point of
intervention in disease.
项目摘要/摘要
在包括发育和转移在内的许多过程中,细胞可以在3D内以微轨迹移动
微环境。这些微轨迹是由细胞本身通过使用基质形成的
降解基质或微痕迹的金属蛋白酶可以作为自然结构的产物存在
器官。虽然MicroTrack迁移发生在体内,但对细胞使用的具体机制知之甚少
在微轨道上移动。我们已经开发了一种独特的平台,使用微制造来重建这些
通过微模塑胶原蛋白在体外进行微跟踪。微轨可以制作成各种尺寸,它们可以是
设计成多种不同的形状,包括锥形通道和分叉通道。我们的微细加工
微轨迹在结构上与在体外和体内发现的轨迹难以区分。此外,它们还提供了一种独特的
与其他基于PDMS的平台相比具有优势,因为胶原蛋白可在所有4个壁上进行细胞黏附
在轨道上,MicroTrack的纤维壁可以被细胞变形,并且轨道更接近于
在体内发现的机械和化学特性。重要的是,我们到目前为止的工作已经表明,
微轨道中的驱动运动与2D衬底上或在
未成型的胶原蛋白。在这里,我们建议建立在我们之前的两个主要发现的基础上,这两个发现是:1.纽蛋白是
微轨运动所需,2.细胞限制改变迁移并与细胞新陈代谢相关。
使用这种新的MicroTrack平台与工程探测器相结合来监测粘附力和细胞能量,
改变细胞收缩和细胞突起的光遗传探针,以及新的力测量技术,
我们将研究驱动细胞迁移的分子机制和迁移过程中的决策
专注于粘着动力学和细胞能量学的微轨道。在目标1中,我们研究了焦点的作用
黏附动力学和张力,基于我们的初步展示,重点关注纽蛋白-塔林-肌动蛋白相互作用
纽蛋白介导单向运动。我们将研究纽蛋白、Talin和肌动蛋白之间的联系,我们
将探索细胞-基质黏附部位发生的力传递。在目标2中,我们将研究如何
细胞能量学和营养物质的可获得性影响有限空间中的迁移和迁移决策。
根据我们之前的工作表明细胞外基质结构改变了ATP的利用,我们假设
这种增加的限制将增加细胞的能量需求。在目标3中,我们将调查
控制细胞迁移决定的分子和机械机制。旨在扰乱武力的构造
将使用细胞和基质之间的传递和药物干预来评估效果
细胞伸缩性和细胞硬度对细胞能量利用、黏附和迁移方向的影响
微音轨。我们对新陈代谢的了解正在迅速发展,因此,治疗靶向
新陈代谢途径正在形成。将迁移行为与新陈代谢联系起来提供了一个潜在的新点
对疾病的干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cynthia A. Reinhart-King其他文献
Engineered models to parse apart the metastatic cascade
设计模型来解析转移级联
- DOI:
10.1038/s41698-019-0092-3 - 发表时间:
2019-08-21 - 期刊:
- 影响因子:8.000
- 作者:
Lauren A. Hapach;Jenna A. Mosier;Wenjun Wang;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
Cell–Cell Mechanical Communication in Cancer
- DOI:
10.1007/s12195-018-00564-x - 发表时间:
2018-12-07 - 期刊:
- 影响因子:5.000
- 作者:
Samantha C. Schwager;Paul V. Taufalele;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
The movement of mitochondria in breast cancer: internal motility and intercellular transfer of mitochondria
- DOI:
10.1007/s10585-024-10269-3 - 发表时间:
2024-03-15 - 期刊:
- 影响因子:3.200
- 作者:
Sarah Libring;Emily D. Berestesky;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
Cancer cell metabolic plasticity in migration and metastasis
- DOI:
10.1007/s10585-021-10102-1 - 发表时间:
2021-06-02 - 期刊:
- 影响因子:3.200
- 作者:
Jenna A. Mosier;Samantha C. Schwager;David A. Boyajian;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
Matrix Stiffness-Mediated DNA Methylation in Endothelial Cells
- DOI:
10.1007/s12195-024-00836-9 - 发表时间:
2025-01-17 - 期刊:
- 影响因子:5.000
- 作者:
Paul V. Taufalele;Hannah K. Kirkham;Cynthia A. Reinhart-King - 通讯作者:
Cynthia A. Reinhart-King
Cynthia A. Reinhart-King的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cynthia A. Reinhart-King', 18)}}的其他基金
Sorting and characterization of cancer cells based on metabolic phenotype
基于代谢表型的癌细胞分选和表征
- 批准号:
10467279 - 财政年份:2022
- 资助金额:
$ 18.01万 - 项目类别:
Developing branch stress microscopy for the mechanobiology of 3D morphogenesis and invasive diseases
开发用于 3D 形态发生和侵袭性疾病的机械生物学的分支应力显微镜
- 批准号:
10539600 - 财政年份:2022
- 资助金额:
$ 18.01万 - 项目类别:
Developing branch stress microscopy for the mechanobiology of 3D morphogenesis and invasive diseases
开发用于 3D 形态发生和侵袭性疾病的机械生物学的分支应力显微镜
- 批准号:
10710186 - 财政年份:2022
- 资助金额:
$ 18.01万 - 项目类别:
Sorting and characterization of cancer cells based on metabolic phenotype
基于代谢表型的癌细胞分选和表征
- 批准号:
10590648 - 财政年份:2022
- 资助金额:
$ 18.01万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 18.01万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 18.01万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 18.01万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 18.01万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 18.01万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 18.01万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 18.01万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 18.01万 - 项目类别: