UCSF Data Science Training to Advance Behavioral and Social Science Expertise for Health Research (DaTABASE) Program
加州大学旧金山分校数据科学培训,以促进健康研究的行为和社会科学专业知识 (DaTABASE) 计划
基本信息
- 批准号:10544029
- 负责人:
- 金额:$ 22.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-13 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Summary
Behavioral and social science researchers are essential for advancing research on reducing health disparities.
The next generation of such researchers must be equipped with the most powerful, contemporary analytic
tools. Newly available data and methods have the potential to transform the questions asked, the research
designs used, and the statistical approaches applied to deepen our understanding of fundamental drivers of
health and increase our capacity to improve population health and reduce disparities. To take advantage of
these opportunities, we need researchers with interdisciplinary training that allows them to connect the
traditional behavioral and social science expertise with the rapidly evolving technical repertoire of
computational health scientists. The UCSF Data Science Training to Advance Behavioral and Social Science
Expertise for Health Research (DaTABASE) program braids training strands previously operating
independently within UCSF. Particular strengths of DaTABASE include: 1) Grounding in a rigorous,
interdisciplinary quantitative training program for a foundation in study designs and statistical analyses to
deliver actionable evidence on health; 2) Integration of multiple data streams, including: ‘omics, clinical (e.g.,
UC-wide, geolocated and longitudinal medical records, clickstream data from UCSF’s unique clinical
informatics infrastructure), digital (device-based data flows, social media data, technology enabled cohorts),
population (e.g., San Francisco Department of Public Health data linking health and social services provided to
homeless individuals or other vulnerable populations) and policy data sets (e.g., local policies regulating
cannabis retail outlets in California communities); 3) training and research activities organized around the
elimination of health disparities. DaTABASE trainees will complete the rigorous methodological training for a
PhD in Epidemiology and Translational Science. Additional content training, overseen by faculty in the UCSF
Center for Health and Community, will provide theoretical frameworks and disciplinary background for social
and behavioral sciences. Additional quantitative methods training will be delivered via the Bakar Computational
Health Sciences Institute (BCHSI). BCHSI emphasizes machine learning tools to mine data sources for novel
insights and discovery, including precision medicine and population health. This training initiative will prepare
graduates to apply those analytic tools to novel data sets for research on behavioral and social processes
underlying health disparities. The DaTABASE program will provide intensive mentoring from both content and
methods experts. DaTABASE alumni will be prepared to lead research addressing current and emerging public
health challenges with innovative computational and data science analytic approaches.
总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Brown其他文献
William Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Brown', 18)}}的其他基金
Developing a Clinical Decision Support Tool that Assesses Risk of Opioid Use Disorder Using Natural Language Processing, Machine Learning, and Social Determinants of Health from Clinical Notes
开发一种临床决策支持工具,利用自然语言处理、机器学习和临床记录中的健康社会决定因素来评估阿片类药物使用障碍的风险
- 批准号:
10352097 - 财政年份:2022
- 资助金额:
$ 22.35万 - 项目类别:
Developing a Clinical Decision Support Tool that Assesses Risk of Opioid Use Disorder Using Natural Language Processing, Machine Learning, and Social Determinants of Health from Clinical Notes
开发一种临床决策支持工具,利用自然语言处理、机器学习和临床记录中的健康社会决定因素来评估阿片类药物使用障碍的风险
- 批准号:
10675434 - 财政年份:2022
- 资助金额:
$ 22.35万 - 项目类别:
Low Cost OCT Angiography with Spectroscopic Contrast
低成本 OCT 血管造影与光谱对比
- 批准号:
10156095 - 财政年份:2021
- 资助金额:
$ 22.35万 - 项目类别:
Low Cost Spectroscopic OCT for GI Applications
适用于 GI 应用的低成本光谱 OCT
- 批准号:
10384636 - 财政年份:2021
- 资助金额:
$ 22.35万 - 项目类别:
UCSF Data Science Training to Advance Behavioral and Social Science Expertise for Health Research (DaTABASE) Program
加州大学旧金山分校数据科学培训,以促进健康研究的行为和社会科学专业知识 (DaTABASE) 计划
- 批准号:
10324595 - 财政年份:2020
- 资助金额:
$ 22.35万 - 项目类别:
Low cost retinal optical coherence tomography for point of care use
用于护理点使用的低成本视网膜光学相干断层扫描
- 批准号:
9515362 - 财政年份:2016
- 资助金额:
$ 22.35万 - 项目类别:
相似海外基金
Using Graph Databases in a Computational Knowledge Engine to Make Animal Health and Disease Data More "FAIR"
在计算知识引擎中使用图数据库使动物健康和疾病数据更加“公平”
- 批准号:
570288-2022 - 财政年份:2022
- 资助金额:
$ 22.35万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Characterizing COVID-19 Patients through a Community Health Information Exchange and EHR databases
通过社区健康信息交换和 EHR 数据库描述 COVID-19 患者的特征
- 批准号:
10177252 - 财政年份:2020
- 资助金额:
$ 22.35万 - 项目类别:
Leveraging public health genotyping databases for near real-time HIV surveillance
利用公共卫生基因分型数据库进行近乎实时的艾滋病毒监测
- 批准号:
10578672 - 财政年份:2019
- 资助金额:
$ 22.35万 - 项目类别:
Co-developing a Novel System to Detect and Act on Harmful Drug-Drug Interactions (DAHDDI) using Administrative Health Databases in Quebec
使用魁北克省的行政健康数据库共同开发一种新系统,以检测和处理有害药物相互作用 (DAHDDI)
- 批准号:
407509 - 财政年份:2019
- 资助金额:
$ 22.35万 - 项目类别:
Fellowship Programs
Leveraging public health genotyping databases for near real-time HIV surveillance
利用公共卫生基因分型数据库进行近乎实时的艾滋病毒监测
- 批准号:
10357920 - 财政年份:2019
- 资助金额:
$ 22.35万 - 项目类别:
SCH: INT: Mining Drug-Drug Interaction Induced Adverse Effects from Health Record Databases
SCH:INT:从健康记录数据库中挖掘药物相互作用引起的不良反应
- 批准号:
1827472 - 财政年份:2018
- 资助金额:
$ 22.35万 - 项目类别:
Standard Grant
CONSORT Extension for Trials Conducted in Existing Data Structures, Including Researcher-generated Cohorts, Registries, Electronic Health Records, and Administrative Databases
CONSORT 扩展适用于在现有数据结构中进行的试验,包括研究人员生成的队列、注册表、电子健康记录和管理数据库
- 批准号:
369876 - 财政年份:2017
- 资助金额:
$ 22.35万 - 项目类别:
Operating Grants
Harnessing the Quebec Pain Registry and the Quebec health administrative databases to improve the management of chronic non-cancer pain in women and men
利用魁北克疼痛登记处和魁北克卫生管理数据库来改善女性和男性慢性非癌症疼痛的管理
- 批准号:
365176 - 财政年份:2017
- 资助金额:
$ 22.35万 - 项目类别:
Operating Grants
Improving the health of infants and children through research that links large health administrative databases with clinical, screening, and laboratory data
通过将大型卫生管理数据库与临床、筛查和实验室数据联系起来的研究来改善婴儿和儿童的健康
- 批准号:
365364 - 财政年份:2017
- 资助金额:
$ 22.35万 - 项目类别:
Operating Grants
SCH: INT: Mining Drug-Drug Interaction Induced Adverse Effects from Health Record Databases
SCH:INT:从健康记录数据库中挖掘药物相互作用引起的不良反应
- 批准号:
1622526 - 财政年份:2016
- 资助金额:
$ 22.35万 - 项目类别:
Standard Grant