Quantifying neural variability and learning during real world brain-computer interface use
量化现实世界脑机接口使用过程中的神经变异和学习
基本信息
- 批准号:10548865
- 负责人:
- 金额:$ 53.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-15 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAutomobile DrivingBiomimeticsCalibrationClinicalCognitiveComplementComputer softwareComputersCustomDataDevelopmentDevicesDimensionsDisabled PersonsElementsEnvironmentEnvironmental Risk FactorFatigueGoalsHomeHome environmentInterventionKnowledgeLaboratoriesLaboratory StudyLearningLightingLimb structureLongitudinal StudiesMeasuresMonitorMotionMotor CortexMovementMusNeuronal PlasticityNoiseOutputPainParticipantPatternPerformancePhysiologicalPopulationPositioning AttributePosturePropertyQuality of lifeSelf-Help DevicesSignal TransductionSourceSpeedStable PopulationsStressSystemTechnologyTestingTimeTrainingTranslatingTranslationsbrain computer interfaceclinical translationdesigndistractionenvironmental changeexperienceexperimental studygrasphome testimprovedmotor learningneuralneural patterningneuromechanismneurotransmissionpopulation basedportabilityresponseskillsvisual tracking
项目摘要
The performance of intracortical brain-computer interfaces (BCIs) has advanced substantially over the last
decade, but these devices are not yet robust enough for the home environment, where they can truly improve
quality of life for individuals with disabilities. To date, BCIs have depended on experienced technicians to operate
large and complicated systems comprised of multiple computers, signal processors, neural recording
headstages, and custom software. Our laboratory has developed a portable, battery-powered intracortical BCI
system that enables independent in-home computer access. However, to achieve the long-term goal of true
clinical viability, BCIs must also offer reliable and robust functional performance in the less well-controlled home
environment. We have achieved robust and generalizable control of a computer cursor using a biomimetic
approach that combines reach-based velocity control of cursor position with grasp-based control of mouse click
onset and offset. This transient-based neural decoder allows for generalized click function, adding the ability to
‘click-and-drag’ when accessing a computer (similar to carrying an object) to the ‘point-and-click’ functionality
that is typically implemented in BCIs. Independent home use of the BCI system will provide an opportunity to
collect neural data over long periods of time during unstructured and varied tasks, enabling quantification of
context-dependent neural variability due to subject-state (e.g., fatigue, pain, or stress) as well as plasticity due
to learning. Understanding how neural signals vary over time will be critical for clinical BCI systems that must be
robust, generalizable, and autonomous (i.e., operate for extended periods without technician intervention).
This project will first quantify the impact of subject-state on movement-related neural activity and performance
during in-home BCI use. This understanding is critical to developing robust BCIs that eliminate the need for
recalibration even in uncontrolled environments. The extent to which subject-state information is represented in
motor cortex and overlaps with BCI control dimensions will inform development efforts to mitigate the impact of
these nuisance variables. Participants will use the BCI for a variety of self-selected computer access tasks over
periods of many months that will challenge decoder performance. This project will investigate motor learning
mechanisms that may be engaged to facilitate improvements in performance that generalize to many different
tasks. Experiments will test the hypothesis that stable population-level neural activity emerges to strengthen
movement-related activity while minimizing non-task-related neural variability. Finally, participants will undergo
targeted neural training to determine if motor learning can be accelerated and whether different mechanisms of
neural reorganization are engaged in response to interventions that challenge the speed and accuracy properties
of the decoder in different ways. This project will improve our understanding of neural plasticity mechanisms
during extended BCI use in a real-world environment. Ultimately this knowledge will enable stable, high-
functioning BCI performance during independent home-use, which is critical for clinical translation.
皮质内脑机接口(BCI)的性能在过去几年中有了很大的进步。
十年,但这些设备还不够强大的家庭环境,他们可以真正改善
残疾人的生活质量。到目前为止,BCI依赖于经验丰富的技术人员来操作
由多台计算机、信号处理器、神经记录器组成的大型复杂系统
云台和定制软件我们的实验室开发了一种便携式,电池供电的脑皮层内脑机接口
一种能够独立访问家庭计算机的系统。然而,要实现真正的长期目标,
为了确保临床可行性,BCI还必须在控制不佳的家庭中提供可靠和强大的功能性能
环境我们已经实现了强大的和通用的控制计算机光标使用仿生
将基于到达的光标位置速度控制与基于抓取的鼠标单击控制相结合的方法
起始和偏移。这种基于瞬态的神经解码器允许广义点击功能,增加了
访问计算机时的“点击并拖动”(类似于携带对象)到“指向并点击”功能
这通常在BCI中实现。BCI系统的独立家庭使用将提供一个机会,
在非结构化和不同的任务中长时间收集神经数据,从而量化
由于受试者状态引起的上下文相关神经变异性(例如,疲劳、疼痛或压力)以及由于可塑性
学习。了解神经信号如何随时间变化对于临床BCI系统至关重要,
鲁棒的、可推广的和自主的(即,在没有技术人员干预的情况下长时间运行)。
本计画将首先量化主体状态对运动相关神经活动与表现的影响
在家庭BCI使用期间。这种理解对于开发强大的BCI至关重要,
即使在不受控制的环境中也能进行重新校准。受试者状态信息在多大程度上被表示在
运动皮层和与BCI控制维度的重叠将为开发工作提供信息,
这些讨厌的变量。参与者将使用BCI进行各种自选的计算机访问任务,
这将挑战解码器的性能。这个项目将研究运动学习
这些机制可以用于促进性能的改进,这些性能的改进概括为许多不同的
任务实验将检验这一假设,即稳定的群体水平的神经活动出现加强
运动相关的活动,同时最大限度地减少非任务相关的神经变异。最后,参与者将接受
有针对性的神经训练,以确定是否可以加速运动学习,以及是否可以通过不同的机制,
神经重组是为了响应挑战速度和准确性的干预措施,
解码器的不同方式。这个项目将提高我们对神经可塑性机制的理解
在现实世界环境中扩展BCI使用期间。最终,这些知识将使稳定,高-
在独立家庭使用期间,BCI的性能正常,这对临床翻译至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer L. Collinger其他文献
Use of Cortical Surface Stimulation towards Reliable Sensation in Human
- DOI:
10.1016/j.apmr.2015.10.071 - 发表时间:
2015-12-01 - 期刊:
- 影响因子:
- 作者:
Shivayogi V. Hiremath;Elizabeth C. Tyler-Kabara;Jesse Wheeler;Daniel W. Moran;Robert A. Gaunt;Jennifer L. Collinger;Stephen Thomas Foldes;Douglas John Weber;Weidong Chen;Michael Boninger;Wei Wang - 通讯作者:
Wei Wang
Evoking stable and precise tactile sensations via multi-electrode intracortical microstimulation of the somatosensory cortex
通过体感皮层的多电极皮层内微刺激唤起稳定而精确的触觉感受
- DOI:
10.1038/s41551-024-01299-z - 发表时间:
2024-12-06 - 期刊:
- 影响因子:26.600
- 作者:
Charles M. Greenspon;Giacomo Valle;Natalya D. Shelchkova;Taylor G. Hobbs;Ceci Verbaarschot;Thierri Callier;Ev I. Berger-Wolf;Elizaveta V. Okorokova;Brianna C. Hutchison;Efe Dogruoz;Anton R. Sobinov;Patrick M. Jordan;Jeffrey M. Weiss;Emily E. Fitzgerald;Dillan Prasad;Ashley Van Driesche;Qinpu He;Fang Liu;Robert F. Kirsch;Jonathan P. Miller;Ray C. Lee;David Satzer;Jorge Gonzalez-Martinez;Peter C. Warnke;Abidemi B. Ajiboye;Emily L. Graczyk;Michael L. Boninger;Jennifer L. Collinger;John E. Downey;Lee E. Miller;Nicholas G. Hatsopoulos;Robert A. Gaunt;Sliman J. Bensmaia - 通讯作者:
Sliman J. Bensmaia
Jennifer L. Collinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer L. Collinger', 18)}}的其他基金
Quantifying neural variability and learning during real world brain-computer interface use
量化现实世界脑机接口使用过程中的神经变异和学习
- 批准号:
10838152 - 财政年份:2023
- 资助金额:
$ 53.27万 - 项目类别:
Development of an EMG-controlled BCI for biomimetic control of hand movement in humans
开发 EMG 控制的 BCI,用于仿生控制人类手部运动
- 批准号:
10651404 - 财政年份:2023
- 资助金额:
$ 53.27万 - 项目类别:
The interplay between kinematic and force representations in motor and somatosensory cortices during reaching, grasping, and object transport
伸手、抓握和物体运输过程中运动和体感皮层运动学和力表征之间的相互作用
- 批准号:
10546486 - 财政年份:2022
- 资助金额:
$ 53.27万 - 项目类别:
Quantifying neural variability and learning during real world brain-computer interface use
量化现实世界脑机接口使用过程中的神经变异和学习
- 批准号:
10363903 - 财政年份:2022
- 资助金额:
$ 53.27万 - 项目类别:
Influence of Task Complexity and Sensory Feedback on Cortical Control of Grasp Force
任务复杂性和感觉反馈对皮质控制握力的影响
- 批准号:
10705074 - 财政年份:2021
- 资助金额:
$ 53.27万 - 项目类别:
Influence of task complexity and sensory feedback on cortical control of grasp force
任务复杂性和感觉反馈对皮质控制抓握力的影响
- 批准号:
10289762 - 财政年份:2021
- 资助金额:
$ 53.27万 - 项目类别:
Influence of task complexity and sensory feedback on cortical control of grasp force
任务复杂性和感觉反馈对皮质控制抓握力的影响
- 批准号:
10480085 - 财政年份:2021
- 资助金额:
$ 53.27万 - 项目类别:
Eighth International Brain Computer Interface Meeting
第八届国际脑机接口会议
- 批准号:
9913702 - 财政年份:2020
- 资助金额:
$ 53.27万 - 项目类别:
Context-dependent processing in sensorimotor cortex
感觉运动皮层的上下文相关处理
- 批准号:
9791028 - 财政年份:2018
- 资助金额:
$ 53.27万 - 项目类别:
Investigation of Cortical Changes Following Spinal Cord Injury
脊髓损伤后皮质变化的调查
- 批准号:
8200932 - 财政年份:2012
- 资助金额:
$ 53.27万 - 项目类别:
相似海外基金
Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
- 批准号:
20K07947 - 财政年份:2020
- 资助金额:
$ 53.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
- 批准号:
17K19824 - 财政年份:2017
- 资助金额:
$ 53.27万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
- 批准号:
25330237 - 财政年份:2013
- 资助金额:
$ 53.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
- 批准号:
23591741 - 财政年份:2011
- 资助金额:
$ 53.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)