Quantifying neural variability and learning during real world brain-computer interface use
量化现实世界脑机接口使用过程中的神经变异和学习
基本信息
- 批准号:10363903
- 负责人:
- 金额:$ 61.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-15 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:Automobile DrivingBiomimeticsClinicalCognitiveComplementComputer softwareComputersCustomDataDevelopmentDevicesDimensionsDisabled PersonsElementsEnvironmentEnvironmental Risk FactorFatigueGoalsHomeHome environmentInterventionKnowledgeLaboratoriesLaboratory StudyLearningLightingLimb structureLongitudinal StudiesMeasuresMonitorMotionMotor CortexMovementMusNeuronal PlasticityNoiseOutputPainParticipantPatternPerformancePhysiologicalPopulationPositioning AttributePosturePropertyQuality of lifeSelf-Help DevicesSignal TransductionSourceSpeedStable PopulationsStressSystemTechnologyTestingTimeTrainingTranslatingTranslationsbasebrain computer interfaceclinical translationdesigndistractionenvironmental changeexperienceexperimental studygrasphome testimprovedmotor learningneural patterningneuromechanismneurotransmissionpopulation basedportabilityrelating to nervous systemresponseskillsvisual tracking
项目摘要
The performance of intracortical brain-computer interfaces (BCIs) has advanced substantially over the last
decade, but these devices are not yet robust enough for the home environment, where they can truly improve
quality of life for individuals with disabilities. To date, BCIs have depended on experienced technicians to operate
large and complicated systems comprised of multiple computers, signal processors, neural recording
headstages, and custom software. Our laboratory has developed a portable, battery-powered intracortical BCI
system that enables independent in-home computer access. However, to achieve the long-term goal of true
clinical viability, BCIs must also offer reliable and robust functional performance in the less well-controlled home
environment. We have achieved robust and generalizable control of a computer cursor using a biomimetic
approach that combines reach-based velocity control of cursor position with grasp-based control of mouse click
onset and offset. This transient-based neural decoder allows for generalized click function, adding the ability to
‘click-and-drag’ when accessing a computer (similar to carrying an object) to the ‘point-and-click’ functionality
that is typically implemented in BCIs. Independent home use of the BCI system will provide an opportunity to
collect neural data over long periods of time during unstructured and varied tasks, enabling quantification of
context-dependent neural variability due to subject-state (e.g., fatigue, pain, or stress) as well as plasticity due
to learning. Understanding how neural signals vary over time will be critical for clinical BCI systems that must be
robust, generalizable, and autonomous (i.e., operate for extended periods without technician intervention).
This project will first quantify the impact of subject-state on movement-related neural activity and performance
during in-home BCI use. This understanding is critical to developing robust BCIs that eliminate the need for
recalibration even in uncontrolled environments. The extent to which subject-state information is represented in
motor cortex and overlaps with BCI control dimensions will inform development efforts to mitigate the impact of
these nuisance variables. Participants will use the BCI for a variety of self-selected computer access tasks over
periods of many months that will challenge decoder performance. This project will investigate motor learning
mechanisms that may be engaged to facilitate improvements in performance that generalize to many different
tasks. Experiments will test the hypothesis that stable population-level neural activity emerges to strengthen
movement-related activity while minimizing non-task-related neural variability. Finally, participants will undergo
targeted neural training to determine if motor learning can be accelerated and whether different mechanisms of
neural reorganization are engaged in response to interventions that challenge the speed and accuracy properties
of the decoder in different ways. This project will improve our understanding of neural plasticity mechanisms
during extended BCI use in a real-world environment. Ultimately this knowledge will enable stable, high-
functioning BCI performance during independent home-use, which is critical for clinical translation.
皮质内脑机接口(BCIs)的性能比过去有了显着提高
十年了,但这些设备对于家庭环境来说还不够强大,在家庭环境中它们可以真正改善
残疾人的生活质量。迄今为止,脑机接口一直依赖经验丰富的技术人员来运营
由多台计算机、信号处理器、神经记录组成的大型复杂系统
探头和定制软件。我们的实验室开发了一种便携式、电池供电的皮质内脑机接口
允许独立的家庭计算机访问的系统。然而,要实现真正的长期目标
临床可行性,BCI 还必须在控制不太良好的家庭中提供可靠和强大的功能性能
环境。我们使用仿生技术实现了对计算机光标的鲁棒且通用的控制
将基于范围的光标位置速度控制与基于抓取的鼠标点击控制相结合的方法
起始点和偏移量。这种基于瞬态的神经解码器允许广义点击功能,增加了
访问计算机时的“点击并拖动”(类似于携带物体)至“点击”功能
这通常在 BCI 中实现。独立家庭使用 BCI 系统将提供一个机会
在非结构化和多样化的任务中长期收集神经数据,从而能够量化
由于受试者状态(例如疲劳、疼痛或压力)而导致的上下文依赖性神经变异性以及由于可塑性
学习。了解神经信号如何随时间变化对于临床 BCI 系统至关重要。
稳健、通用且自主(即无需技术人员干预即可长时间运行)。
该项目将首先量化主体状态对运动相关神经活动和表现的影响
在家庭 BCI 使用期间。这种理解对于开发强大的 BCI 至关重要,从而消除对
即使在不受控制的环境中也能重新校准。主体状态信息的表示程度
运动皮层以及与 BCI 控制维度的重叠将为减轻以下影响的开发工作提供信息
这些令人讨厌的变量。参与者将使用 BCI 执行各种自选的计算机访问任务
数月的时间将挑战解码器的性能。该项目将研究运动学习
可能涉及促进绩效改进的机制,这些机制可推广到许多不同的领域
任务。实验将检验这一假设:稳定的群体水平神经活动会加强
运动相关的活动,同时最大限度地减少非任务相关的神经变异。最后,参与者将经历
有针对性的神经训练,以确定运动学习是否可以加速,以及是否有不同的机制
神经重组致力于响应挑战速度和准确性特性的干预措施
解码器的不同方式。该项目将增进我们对神经可塑性机制的理解
在现实环境中扩展 BCI 使用期间。最终,这些知识将使稳定、高
独立家庭使用期间正常的 BCI 性能,这对于临床转化至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer L. Collinger其他文献
Use of Cortical Surface Stimulation towards Reliable Sensation in Human
- DOI:
10.1016/j.apmr.2015.10.071 - 发表时间:
2015-12-01 - 期刊:
- 影响因子:
- 作者:
Shivayogi V. Hiremath;Elizabeth C. Tyler-Kabara;Jesse Wheeler;Daniel W. Moran;Robert A. Gaunt;Jennifer L. Collinger;Stephen Thomas Foldes;Douglas John Weber;Weidong Chen;Michael Boninger;Wei Wang - 通讯作者:
Wei Wang
Evoking stable and precise tactile sensations via multi-electrode intracortical microstimulation of the somatosensory cortex
通过体感皮层的多电极皮层内微刺激唤起稳定而精确的触觉感受
- DOI:
10.1038/s41551-024-01299-z - 发表时间:
2024-12-06 - 期刊:
- 影响因子:26.600
- 作者:
Charles M. Greenspon;Giacomo Valle;Natalya D. Shelchkova;Taylor G. Hobbs;Ceci Verbaarschot;Thierri Callier;Ev I. Berger-Wolf;Elizaveta V. Okorokova;Brianna C. Hutchison;Efe Dogruoz;Anton R. Sobinov;Patrick M. Jordan;Jeffrey M. Weiss;Emily E. Fitzgerald;Dillan Prasad;Ashley Van Driesche;Qinpu He;Fang Liu;Robert F. Kirsch;Jonathan P. Miller;Ray C. Lee;David Satzer;Jorge Gonzalez-Martinez;Peter C. Warnke;Abidemi B. Ajiboye;Emily L. Graczyk;Michael L. Boninger;Jennifer L. Collinger;John E. Downey;Lee E. Miller;Nicholas G. Hatsopoulos;Robert A. Gaunt;Sliman J. Bensmaia - 通讯作者:
Sliman J. Bensmaia
Jennifer L. Collinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer L. Collinger', 18)}}的其他基金
Quantifying neural variability and learning during real world brain-computer interface use
量化现实世界脑机接口使用过程中的神经变异和学习
- 批准号:
10838152 - 财政年份:2023
- 资助金额:
$ 61.35万 - 项目类别:
Development of an EMG-controlled BCI for biomimetic control of hand movement in humans
开发 EMG 控制的 BCI,用于仿生控制人类手部运动
- 批准号:
10651404 - 财政年份:2023
- 资助金额:
$ 61.35万 - 项目类别:
Quantifying neural variability and learning during real world brain-computer interface use
量化现实世界脑机接口使用过程中的神经变异和学习
- 批准号:
10548865 - 财政年份:2022
- 资助金额:
$ 61.35万 - 项目类别:
The interplay between kinematic and force representations in motor and somatosensory cortices during reaching, grasping, and object transport
伸手、抓握和物体运输过程中运动和体感皮层运动学和力表征之间的相互作用
- 批准号:
10546486 - 财政年份:2022
- 资助金额:
$ 61.35万 - 项目类别:
Influence of Task Complexity and Sensory Feedback on Cortical Control of Grasp Force
任务复杂性和感觉反馈对皮质控制握力的影响
- 批准号:
10705074 - 财政年份:2021
- 资助金额:
$ 61.35万 - 项目类别:
Influence of task complexity and sensory feedback on cortical control of grasp force
任务复杂性和感觉反馈对皮质控制抓握力的影响
- 批准号:
10289762 - 财政年份:2021
- 资助金额:
$ 61.35万 - 项目类别:
Influence of task complexity and sensory feedback on cortical control of grasp force
任务复杂性和感觉反馈对皮质控制抓握力的影响
- 批准号:
10480085 - 财政年份:2021
- 资助金额:
$ 61.35万 - 项目类别:
Eighth International Brain Computer Interface Meeting
第八届国际脑机接口会议
- 批准号:
9913702 - 财政年份:2020
- 资助金额:
$ 61.35万 - 项目类别:
Context-dependent processing in sensorimotor cortex
感觉运动皮层的上下文相关处理
- 批准号:
9791028 - 财政年份:2018
- 资助金额:
$ 61.35万 - 项目类别:
Investigation of Cortical Changes Following Spinal Cord Injury
脊髓损伤后皮质变化的调查
- 批准号:
8200932 - 财政年份:2012
- 资助金额:
$ 61.35万 - 项目类别:
相似海外基金
Development of novel nucleic acid therapeutics by structural biomimetics
通过结构仿生学开发新型核酸疗法
- 批准号:
23K04948 - 财政年份:2023
- 资助金额:
$ 61.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Breakthrough in ceramics driven by digital fabrication and biomimetics
数字制造和仿生学推动陶瓷领域取得突破
- 批准号:
22K19798 - 财政年份:2022
- 资助金额:
$ 61.35万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Nanocrystal Quantum Dot Biomimetics of SARS-CoV-2 to Interrogate Neutrophil-Mediated Neuroinflammation at the Blood-Brain Barrier
SARS-CoV-2 的纳米晶量子点仿生学研究中性粒细胞介导的血脑屏障神经炎症
- 批准号:
10510611 - 财政年份:2022
- 资助金额:
$ 61.35万 - 项目类别:
Scaffold-based Biomimetics of Fe-Hydrogenase and Nitrogenase (FeMoco): Interrogating Dynamics, Protein Matrix Effects, and Carbide Motifs
基于支架的铁氢化酶和固氮酶 (FeMoco) 仿生学:探究动力学、蛋白质基质效应和碳化物基序
- 批准号:
2109175 - 财政年份:2021
- 资助金额:
$ 61.35万 - 项目类别:
Standard Grant
Structure, immunity and microbiome: Human 3D biomimetics cervicovaginal models for sexually transmitted infections (SIM-STI)
结构、免疫和微生物组:用于性传播感染的人体 3D 仿生子宫颈阴道模型 (SIM-STI)
- 批准号:
10190230 - 财政年份:2021
- 资助金额:
$ 61.35万 - 项目类别:
Structure, immunity and microbiome: Human 3D biomimetics cervicovaginal models for sexually transmitted infections (SIM-STI)
结构、免疫和微生物组:用于性传播感染的人体 3D 仿生子宫颈阴道模型 (SIM-STI)
- 批准号:
10596506 - 财政年份:2021
- 资助金额:
$ 61.35万 - 项目类别:
Structure, immunity and microbiome: Human 3D biomimetics cervicovaginal models for sexually transmitted infections (SIM-STI)
结构、免疫和微生物组:用于性传播感染的人体 3D 仿生子宫颈阴道模型 (SIM-STI)
- 批准号:
10395578 - 财政年份:2021
- 资助金额:
$ 61.35万 - 项目类别:
Research Initiation Award: Development and Evaluation of Biomimetics Antibiotic Surface
研究启动奖:仿生抗生素表面的开发与评估
- 批准号:
2000061 - 财政年份:2020
- 资助金额:
$ 61.35万 - 项目类别:
Standard Grant
Smart Urban Degeneration by Learning from Biomimetics
通过仿生学学习实现智能城市退化
- 批准号:
20H02265 - 财政年份:2020
- 资助金额:
$ 61.35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




