Forecasting Migraine Attacks
预测偏头痛发作
基本信息
- 批准号:10552024
- 负责人:
- 金额:$ 42.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AmericanBayesian ForecastBayesian MethodCalibrationClinicalDataDiscriminationDiseaseEquilibriumEstimation TechniquesExhibitsFrequenciesFutureGoalsHeadacheHourIndividualInterceptLaboratoriesLearningLiteratureMachine LearningMeasurementMigraineModelingMoodsOnline SystemsPainParameter EstimationParticipantPatient Self-ReportPerformancePersonsPharmaceutical PreparationsPopulation HeterogeneityProbabilityProceduresRainResearch PersonnelResolutionRiskSleepSpecific qualifier valueStatistical ModelsStressSymptomsSystemTestingTreatment EffectivenessUncertaintyUpdateWeatherWeightbaseclinically relevantdiariesexperienceimprovedneuromechanismperceived stresspredictive modelingpreventrisk predictionrisk prediction modeltheories
项目摘要
Project Summary
For the millions of individuals who experience migraine each year, treatment typically consists of
reactively treating attacks only after experiencing disruptive pain and secondary symptoms. Because individual
migraine attacks are unpredictable to most sufferers, abortive medications are not used early or effectively,
and strategies to preemptively stop developing attacks cannot be formulated. By formalizing the daily risk for
an attack, individuals will be better prepared to use existing abortive therapies and reduce the suffering
associated with any single attack. Our team has previously built and tested the Headache Prediction-I
(HAPRED-I) and Headache Prediction-II (HAPRED-II) models, which are simple migraine forecasting models
that are based on daily stress. Despite their promise, these models exhibit several weaknesses that would
prevent them from broad clinical use. The objective of this project is to evaluate a new forecasting model that
has improved predictive power. To accomplish this, several important predictors have been added to the
existing model, and the parameters of the new model will be continuously updated using Bayesian estimation.
In the new HAPRED-III model (Aim 1), the forecasting window is reduced from 24 to 12 hours, temporal
statistical predictors have been added, and additional predictors (e.g., sleep, mood, medication use, prodromal
symptoms, and self-prediction) will be tested for improved performance. To allow the model to be more easily
deployed (Aim 2), predictors of the model parameters will be examined. These predictors will better inform the
prior probabilities of the model parameters and will reduce the need to collect weeks or months of data from
each individual before generating reliable forecasts.
项目摘要
对于每年经历偏头痛的数百万个人,治疗通常包括
仅在经历破坏性疼痛和继发性症状后才反应治疗攻击。因为个体
偏头痛攻击对大多数患者来说是无法预测的,流产药物不早或有效地使用,
不能制定先发制人停止发展攻击的策略。通过形式化日常风险
攻击,个人将更好地准备使用现有的流产疗法并减少痛苦
与任何一次攻击有关。我们的团队以前已经建立并测试了头痛预测-I
(HAPRED-I)和头痛预测-II(HAPRED-II)模型,它们是简单的偏头痛预测模型
基于每日压力。尽管有承诺,这些模型表现出了几个弱点
防止它们广泛使用。该项目的目的是评估一种新的预测模型
提高了预测能力。为此,已经添加了一些重要的预测指标
现有模型以及新模型的参数将使用贝叶斯估算不断更新。
在新的HAPRED-III型号(AIM 1)中,预测窗口从24个小时减少到12小时
已经添加了统计预测因子,并增加了其他预测因子(例如睡眠,情绪,用药,前驱
症状和自我预测)将进行测试以提高性能。使模型更容易
部署(AIM 2)将检查模型参数的预测因子。这些预测因素将更好地告知
模型参数的先前概率,并将减少收集数周或数月数据的需求
每个人都产生可靠的预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TIMOTHY T HOULE其他文献
TIMOTHY T HOULE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TIMOTHY T HOULE', 18)}}的其他基金
Inhibiting RIPK1 with Necrostatin-1 for Safe and Effective Pain Treatment
用 Necrostatin-1 抑制 RIPK1 可安全有效地治疗疼痛
- 批准号:
10507932 - 财政年份:2022
- 资助金额:
$ 42.2万 - 项目类别:
Moderating Influence of Ovarian Hormones on Physiological Arousal and Headache
卵巢激素对生理唤醒和头痛的调节影响
- 批准号:
7635564 - 财政年份:2009
- 资助金额:
$ 42.2万 - 项目类别:
Moderating Influence of Ovarian Hormones on Physiological Arousal and Headache
卵巢激素对生理唤醒和头痛的调节影响
- 批准号:
8068659 - 财政年份:2009
- 资助金额:
$ 42.2万 - 项目类别:
Moderating Influence of Ovarian Hormones on Physiological Arousal and Headache
卵巢激素对生理唤醒和头痛的调节影响
- 批准号:
8470255 - 财政年份:2009
- 资助金额:
$ 42.2万 - 项目类别:
Moderating Influence of Ovarian Hormones on Physiological Arousal and Headache
卵巢激素对生理唤醒和头痛的调节影响
- 批准号:
8288135 - 财政年份:2009
- 资助金额:
$ 42.2万 - 项目类别:
相似国自然基金
隐伏矿体三维预测不确定性层级传播的层次贝叶斯建模
- 批准号:42302338
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于高维组学数据的贝叶斯多水平stacking融合预测模型构建方法与应用研究
- 批准号:82373688
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
随机流动性调整下基于深度学习与贝叶斯方法的期权价格预测及风险管理研究
- 批准号:12301606
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于统计假设检验和贝叶斯方法的网络社区结构分析和标签预测
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于统计假设检验和贝叶斯方法的网络社区结构分析和标签预测
- 批准号:12201004
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
A hybrid artificial intelligence framework for glaucoma monitoring
用于青光眼监测的混合人工智能框架
- 批准号:
9892013 - 财政年份:2019
- 资助金额:
$ 42.2万 - 项目类别:
Identifying Key Genes that cause Aggressive Brain Cancer
识别导致侵袭性脑癌的关键基因
- 批准号:
8339225 - 财政年份:2012
- 资助金额:
$ 42.2万 - 项目类别:
Identifying Key Genes that cause Aggressive Brain Cancer
识别导致侵袭性脑癌的关键基因
- 批准号:
8536859 - 财政年份:2012
- 资助金额:
$ 42.2万 - 项目类别:
Identifying Key Genes that cause Aggressive Brain Cancer
识别导致侵袭性脑癌的关键基因
- 批准号:
8707483 - 财政年份:2012
- 资助金额:
$ 42.2万 - 项目类别: