Bioanalytics Core

生物分析核心

基本信息

项目摘要

Summary The Bioanalytics Core (BC) will support the implementation of a uniform, innovative approach to the analyses of the Program's research Projects. The Core consists of Dr. Timothy Houle and Carol Aschenbrenner, both of whom are experienced biostatisticians with expertise in the proposed methods. The goals of the BC are to evaluate the statistical inferences posed in each of the Projects using the most appropriate statistical model. To accomplish these goals we will utilize several approaches including: growth curve modeling, generalized linear models, generalized estimating equations and other multivariate procedures (e.g., multidimensional scaling). The BC will work closely with the individual investigators of the Projects (PIs: Peters, Martin, Eisenach) to condition the data and address the specific hypotheses inherent in the research. All of the Projects involve studies that repeatedly measure some element of recovery over time after a surgical/experimental insult. Growth curve modeling, sometimes referred to as mixed-effects modeling, or hierarchical linear modeling, will allow us to specify a change trajectory (i.e., healing) that is unique to each individual/animal. The nature of the common form of changes in pain/behavior will be modeled using curvilinear forms (e.g., polynomial regression). Through the use of fixed and random effects, we will then be able to examine the influences on the changes in pain measurements in both the human and animal studies. In this way, we can examine the predictors immediately after surgery, the factors that predict delayed/absent recovery, patterns in these changes across individuals, and examine the relationships between initial measurements and expected change. This approach to the data analysis is highly innovative in this setting, and will extract novel information from these important data.
摘要 生物分析核心(BC)将支持实施统一、创新的方法来 对该计划的研究项目进行分析。核心由蒂莫西·豪尔博士和卡罗尔组成 Aschenbrenner,他们两人都是经验丰富的生物统计学家,拥有拟议方法的专业知识。这个 BC的目标是评估在每个项目中提出的统计推断,使用最 适当的统计模型。为了实现这些目标,我们将使用几种方法,包括:增长 曲线建模、广义线性模型、广义估计方程和其他多变量程序 (例如,多维缩放)。BC将与项目的个人调查员密切合作(PI: 彼得斯、马丁、艾森纳赫)对数据进行条件调整,并解决研究中固有的具体假设。 所有的项目都涉及反复测量在一段时间后恢复的某些元素的研究 外科/实验性侮辱。增长曲线建模,有时称为混合效果建模,或 分层线性建模,将允许我们指定一个变化轨迹(即,修复),这是每个 个体/动物。疼痛/行为变化的常见形式的性质将使用 曲线形式(例如,多项式回归)。通过使用固定和随机的效果,我们将被 能够在人类和动物研究中检查对疼痛测量变化的影响。在……里面 这样,我们可以立即检查手术后的预测因素,即预测延迟/缺席的因素 恢复,这些变化在个人之间的模式,并检查之间的关系最初 测量结果和预期变化。这种数据分析方法在这种情况下是非常创新的, 并将从这些重要数据中提取新的信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TIMOTHY T HOULE其他文献

TIMOTHY T HOULE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TIMOTHY T HOULE', 18)}}的其他基金

Forecasting Migraine Attacks
预测偏头痛发作
  • 批准号:
    10552024
  • 财政年份:
    2022
  • 资助金额:
    $ 10.35万
  • 项目类别:
Forecasting Migraine Attacks
预测偏头痛发作
  • 批准号:
    10366149
  • 财政年份:
    2022
  • 资助金额:
    $ 10.35万
  • 项目类别:
Inhibiting RIPK1 with Necrostatin-1 for Safe and Effective Pain Treatment
用 Necrostatin-1 抑制 RIPK1 可安全有效地治疗疼痛
  • 批准号:
    10507932
  • 财政年份:
    2022
  • 资助金额:
    $ 10.35万
  • 项目类别:
Physiological Arousal and Headache
生理唤醒和头痛
  • 批准号:
    9315919
  • 财政年份:
    2009
  • 资助金额:
    $ 10.35万
  • 项目类别:
Moderating Influence of Ovarian Hormones on Physiological Arousal and Headache
卵巢激素对生理唤醒和头痛的调节影响
  • 批准号:
    7635564
  • 财政年份:
    2009
  • 资助金额:
    $ 10.35万
  • 项目类别:
Moderating Influence of Ovarian Hormones on Physiological Arousal and Headache
卵巢激素对生理唤醒和头痛的调节影响
  • 批准号:
    8068659
  • 财政年份:
    2009
  • 资助金额:
    $ 10.35万
  • 项目类别:
Physiological Arousal and Headache
生理唤醒和头痛
  • 批准号:
    9133476
  • 财政年份:
    2009
  • 资助金额:
    $ 10.35万
  • 项目类别:
Moderating Influence of Ovarian Hormones on Physiological Arousal and Headache
卵巢激素对生理唤醒和头痛的调节影响
  • 批准号:
    8470255
  • 财政年份:
    2009
  • 资助金额:
    $ 10.35万
  • 项目类别:
Moderating Influence of Ovarian Hormones on Physiological Arousal and Headache
卵巢激素对生理唤醒和头痛的调节影响
  • 批准号:
    8288135
  • 财政年份:
    2009
  • 资助金额:
    $ 10.35万
  • 项目类别:
MIGRAINE FORECAST
偏头痛预测
  • 批准号:
    7607713
  • 财政年份:
    2007
  • 资助金额:
    $ 10.35万
  • 项目类别:

相似海外基金

Elucidation of novel mechanisms of chronic pain using model animals created based on chronic pain patient data
使用根据慢性疼痛患者数据创建的模型动物阐明慢性疼痛的新机制
  • 批准号:
    23H03003
  • 财政年份:
    2023
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistical models of congenital diseases and malignant tumor using pathopathological data of wild animals
利用野生动物病理病理数据建立先天性疾病和恶性肿瘤统计模型
  • 批准号:
    20K08262
  • 财政年份:
    2020
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSF Postdoctoral Fellowship in Biology FY 2019: Using herbarium specimens and animal movement data to assess when animals will help plants track niches in a changing climate
2019 财年 NSF 生物学博士后奖学金:利用植物标本和动物运动数据来评估动物何时帮助植物追踪气候变化中的生态位
  • 批准号:
    1907348
  • 财政年份:
    2020
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Fellowship Award
Development of a nano-size electronic tag for aquatic animals to achieve data-driven science
开发水生动物纳米级电子标签,实现数据驱动科学
  • 批准号:
    19H03036
  • 财政年份:
    2019
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Heart rate variability and dynamic body acceleration: a novel method to assess the status of farm animals using physiological and physical sensing data
心率变异性和动态身体加速度:一种利用生理和物理传感数据评估农场动物状态的新方法
  • 批准号:
    19K06352
  • 财政年份:
    2019
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ABI Development: A Genomic Data Mining Resource to Accelerate Genome-to-Phenome Discovery in Domesticated Animals
ABI 开发:加速家养动物基因组到表型组发现的基因组数据挖掘资源
  • 批准号:
    1759896
  • 财政年份:
    2018
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Standard Grant
Telemetry implant system to collect and analyze physiological data on free-moving animals
遥测植入系统,用于收集和分析自由移动动物的生理数据
  • 批准号:
    RTI-2018-00567
  • 财政年份:
    2017
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Research Tools and Instruments
Big Data approaches to identifying potential sources of emerging pathogens in humans, domesticated animals and crops
利用大数据方法识别人类、家养动物和农作物中新出现的病原体的潜在来源
  • 批准号:
    MR/R024898/1
  • 财政年份:
    2017
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Fellowship
State of The Art Machine Learning Methods For Classification of Animals In Ocean Acoustics Data
用于海洋声学数据中动物分类的最先进机器学习方法
  • 批准号:
    521160-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Engage Grants Program
High channel count electrophysiology and data processing for freely-moving animals
自由移动动物的高通道数电生理学和数据处理
  • 批准号:
    10385193
  • 财政年份:
    2017
  • 资助金额:
    $ 10.35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了