Fast Individualized Delivery Adaptation in Proton Therapy
质子治疗中的快速个体化治疗适应
基本信息
- 批准号:10595078
- 负责人:
- 金额:$ 30.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsClinicalCommunitiesComputer softwareDevelopmentDoseGamma RaysGeometryGoalsImageMeasuresMethodologyMethodsPatientsPhotonsPhysicsPositioning AttributeProtonsRadiation therapyResearchSoftware ToolsSpectrum AnalysisSystemTechnologyTimeUncertaintyValidationX-Ray Computed Tomographyclinical practiceclinically significantcone-beam computed tomographyimage registrationimprovedin vivoinnovationnovelproton therapyquality assuranceradiation deliverytreatment planning
项目摘要
While adaptive therapy has been studied before, none of the previous studies deals with the unique challenges
(range uncertainties) and unique capabilities (beamlet optimization and prompt gamma imaging) of proton
therapy. This proposal will for the first time address these aspects by developing innovative hardware and
software methodologies. We envision treatment planning and delivery to be fully adaptive in terms of intra-
fractional changes in patient geometry.
This proposal aims at predicting the dose distribution (or a surrogate thereof) in the patient immediately prior to
treatment delivery and correct for any discrepancies between the measured and intended dose in less than 2
minutes. This will enable us to deliver (proton) radiation therapy in an adaptive setting and much reduced target
volume margins (2mm isotropic plus 2mm range margin in proton therapy in the beam direction) daily while
the patient is positioned on the treatment table.
We propose to achieve this goal by simultaneously developing fast hardware and software tools that take
advantage of in-room prompt gamma and cone-beam CT imaging in combination with fast dose calculation. We
will combine this technology with a novel framework on beamlet adaptation.
While some of our methods will improve photon therapy as well, we will focus on proton therapy because it
offers unique opportunities to dose verification in vivo as well as unique challenges due to range uncertainties.
Our methodology will be made available to the entire proton therapy community.
虽然适应性治疗以前已经研究过,但以前的研究都没有涉及独特的挑战
(范围不确定性)和独特的能力(子束优化和即时伽马成像)
疗法该提案将首次通过开发创新硬件解决这些问题,
软件方法学。我们设想治疗计划和实施在内部方面完全自适应,
患者几何形状的部分变化。
该提议旨在预测在施用前即刻患者中的剂量分布(或其替代物)。
治疗输送,并在小于2小时内纠正测量剂量和预期剂量之间的任何差异
分钟这将使我们能够提供(质子)放射治疗在一个自适应的设置和大大减少的目标
每天的体积裕度(2 mm各向同性加2 mm质子治疗射束方向范围裕度),
患者被定位在治疗台上。
我们建议通过同时开发快速的硬件和软件工具来实现这一目标,
室内即时伽马和锥形束CT成像结合快速剂量计算的优势。我们
将联合收割机结合这种技术与一种新的小波束适应框架。
虽然我们的一些方法也将改善光子治疗,但我们将专注于质子治疗,因为它
为体内剂量验证提供了独特的机会,也因范围不确定性而带来了独特的挑战。
我们的方法将提供给整个质子治疗社区。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CT-on-Rails Versus In-Room CBCT for Online Daily Adaptive Proton Therapy of Head-and-Neck Cancers.
- DOI:10.3390/cancers13235991
- 发表时间:2021-11-28
- 期刊:
- 影响因子:5.2
- 作者:Nesteruk KP;Bobić M;Lalonde A;Winey BA;Lomax AJ;Paganetti H
- 通讯作者:Paganetti H
Evaluation of CBCT scatter correction using deep convolutional neural networks for head and neck adaptive proton therapy.
- DOI:10.1088/1361-6560/ab9fcb
- 发表时间:2020-12-04
- 期刊:
- 影响因子:3.5
- 作者:Lalonde A;Winey B;Verburg J;Paganetti H;Sharp GC
- 通讯作者:Sharp GC
Adaptive proton therapy.
- DOI:10.1088/1361-6560/ac344f
- 发表时间:2021-11-15
- 期刊:
- 影响因子:3.5
- 作者:Paganetti H;Botas P;Sharp GC;Winey B
- 通讯作者:Winey B
Comparison of weekly and daily online adaptation for head and neck intensity-modulated proton therapy.
- DOI:10.1088/1361-6560/abe050
- 发表时间:2021-02-25
- 期刊:
- 影响因子:3.5
- 作者:Bobić M;Lalonde A;Sharp GC;Grassberger C;Verburg JM;Winey BA;Lomax AJ;Paganetti H
- 通讯作者:Paganetti H
Low-Dose Computed Tomography Scanning Protocols for Online Adaptive Proton Therapy of Head-and-Neck Cancers.
- DOI:10.3390/cancers14205155
- 发表时间:2022-10-21
- 期刊:
- 影响因子:5.2
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HARALD PAGANETTI其他文献
HARALD PAGANETTI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HARALD PAGANETTI', 18)}}的其他基金
Project 1: Understanding normal tissue toxicity to identify patients most likely to benefit from proton therapy.
项目 1:了解正常组织毒性,以确定最有可能从质子治疗中受益的患者。
- 批准号:
10270305 - 财政年份:2021
- 资助金额:
$ 30.04万 - 项目类别:
Project 1: Understanding normal tissue toxicity to identify patients most likely to benefit from proton therapy.
项目 1:了解正常组织毒性,以确定最有可能从质子治疗中受益的患者。
- 批准号:
10491847 - 财政年份:2021
- 资助金额:
$ 30.04万 - 项目类别:
Fast Individualized Delivery Adaptation in Proton Therapy
质子治疗中的快速个体化治疗适应
- 批准号:
10379929 - 财政年份:2019
- 资助金额:
$ 30.04万 - 项目类别:
Fast Individualized Delivery Adaptation in Proton Therapy
质子治疗中的快速个体化治疗适应
- 批准号:
9893838 - 财政年份:2019
- 资助金额:
$ 30.04万 - 项目类别:
PBeam: Fast and Easy Monte Carlo System for Proton Therapy
PBeam:用于质子治疗的快速简便的蒙特卡罗系统
- 批准号:
8074574 - 财政年份:2009
- 资助金额:
$ 30.04万 - 项目类别:
TOPAS: Fast and easy to use Monte Carlo system for proton therapy
TOPAS:快速且易于使用的质子治疗蒙特卡罗系统
- 批准号:
8690791 - 财政年份:2009
- 资助金额:
$ 30.04万 - 项目类别:
TOPAS: Fast and easy to use Monte Carlo system for proton therapy
TOPAS:快速且易于使用的质子治疗蒙特卡罗系统
- 批准号:
8883402 - 财政年份:2009
- 资助金额:
$ 30.04万 - 项目类别:
PBeam: Fast and Easy Monte Carlo System for Proton Therapy
PBeam:用于质子治疗的快速简便的蒙特卡罗系统
- 批准号:
8265222 - 财政年份:2009
- 资助金额:
$ 30.04万 - 项目类别:
PBeam: Fast and Easy Monte Carlo System for Proton Therapy
PBeam:用于质子治疗的快速简便的蒙特卡罗系统
- 批准号:
7697463 - 财政年份:2009
- 资助金额:
$ 30.04万 - 项目类别:
TOPAS: Fast and easy to use Monte Carlo system for proton therapy
TOPAS:快速且易于使用的质子治疗蒙特卡罗系统
- 批准号:
8578284 - 财政年份:2009
- 资助金额:
$ 30.04万 - 项目类别:
相似海外基金
Exploring the Potential Clinical Application of Pulse Arrival Time for Assessing Arterial Stiffness Using Machine Learning Algorithms
使用机器学习算法探索脉冲到达时间评估动脉僵硬度的潜在临床应用
- 批准号:
2649903 - 财政年份:2022
- 资助金额:
$ 30.04万 - 项目类别:
Studentship
Implementing clinical decision support for improved outpatient neurorehabilitation post-stroke and spinal cord injury through the integration of wearable technology and deep learning algorithms.
通过集成可穿戴技术和深度学习算法,实施临床决策支持,以改善中风和脊髓损伤后的门诊神经康复。
- 批准号:
475572 - 财政年份:2022
- 资助金额:
$ 30.04万 - 项目类别:
Studentship Programs
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
- 批准号:
10559690 - 财政年份:2022
- 资助金额:
$ 30.04万 - 项目类别:
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
- 批准号:
10437156 - 财政年份:2022
- 资助金额:
$ 30.04万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10277514 - 财政年份:2021
- 资助金额:
$ 30.04万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10462646 - 财政年份:2021
- 资助金额:
$ 30.04万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10631239 - 财政年份:2021
- 资助金额:
$ 30.04万 - 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
- 批准号:
10329938 - 财政年份:2021
- 资助金额:
$ 30.04万 - 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
- 批准号:
10405326 - 财政年份:2021
- 资助金额:
$ 30.04万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10809977 - 财政年份:2021
- 资助金额:
$ 30.04万 - 项目类别: