An effective, data driven, interoperable, early intervention to tackle the covid related decline in youth mental health
一种有效的、数据驱动的、可互操作的早期干预措施,以解决与新冠病毒相关的青少年心理健康下降问题
基本信息
- 批准号:79504
- 负责人:
- 金额:$ 33.68万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Collaborative R&D
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Prior to the outbreak of COVID-19 youth mental health services globally were already overstretched and unfunded (WHO\_2018). Mental illness in young people costs the public purse up to £63,878 per person, pa (Suhrcke\_2008). During COVID-19 the need for support has increased, whilst access to support has declined (Young\_Minds\_2020). There is already evidence of increased childhood depression during lockdown ([Bignardi\_2020][0]\_[Cortina\_2020][1]). Since March 20th, engagement on MeeTwo has increased by 30% and high risk posts have increased by 65%. COVID has created multiple co-occurring risk factors that increase the likelihood of mental health difficulties (e.g., parental job loss, marital conflict, bereavement). The aggregation of this risk will only unfold over time so early intervention is crucial [(Wade, 2020)][2]. Early intervention helps prevent young people reaching crisis point and decreases the likelihood of long-term mental ill health in adulthood (RCON 2017). Post COVID-19 it is critical that the UK exploit innovative methods of prevention, intervention and service delivery.MeeTwo is a multi-award winning peer support app for people aged 11-25\. It already supports 35k young people and is featured on the NHS Apps Library. MeeTwo Connect is a new service, launched during lockdown, which enables young people to connect to their school, university or NHS mental health provider from within the app. MeeTwo and MeeTwo Connect are innovative because they provide anytime, anywhere access to multiple interoperable psychological support options.Launched in 2017, the MeeTwo data set is now big enough to provide longitudinal insights into the impact of the pandemic. We urgently need to develop a suite of data reporting tools and undertake independent impact evaluation so that we can fully exploit the value of our data. The integration of Machine Learning and advanced data analytics techniques will improve understanding of youth mental health following COVID-19 and increase our capacity to help users access appropriate services.This project directly addresses the mental health issues arising from COVID-19\. With a better understanding of our data we can identify how COVID-19 has damaged youth mental health and deliver targeted support by issue, location, gender and age. Early intervention for the 37% of young people referred to CAMHS but discharged following assessment would slash CAMHS waiting lists. In 2017/18, 69% of young people referred to CAMHS did not receive treatment within a year (Children's Commissioner 2018). The provision of easily accessible, high quality, evidence based mental help for all young people will reduce the burden on school and university counsellors, CAMHS and IAPT; freeing up counsellors and clinicians to focus on those with greatest need. Data reporting tools developed with this research will make it easier to share data with institutions to inform and improve their services.This 9-month Experimental/Industrial Research project, run in partnership with The Anna Freud Centre and Oxleas NHS Foundation Trust will ensure that MeeTwo Connect is fully equipped to play a leading role in the post COVID-19 recovery.[0]: https://osf.io/v7f3q/[1]: https://www.ucl.ac.uk/evidence-based-practice-unit/sites/evidence-based-practice-unit/files/coronavirus_emerging_evidence_issue_2.pdf[2]: https://ucl-new-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=TN_elsevier_sdoi_10_1016_j_psychres_2020_113143&context=PC&vid=UCL_VU2?=en_US&search_scope=CSCOP_UCL&adaptor=primo_central_multiple_fe&tab=local&query=any,contains,mental%20health%20youth%20covid&offset=0
在2019冠状病毒病爆发之前,全球的青年心理健康服务已经不堪重负,资金不足(WHO\_2018)。年轻人的精神疾病花费公共钱包高达每人63,878英镑,pa(Suhrcke_2008)。在COVID-19期间,对支持的需求增加,而获得支持的机会减少(Young\_Minds\_2020)。已有证据表明,在封锁期间儿童抑郁症增加([Bignardi\_2020][0]\_[Cortina\_2020][1])。自3月20日以来,MeeTwo的参与度增加了30%,高风险职位增加了65%。COVID产生了多种并发的风险因素,增加了心理健康困难的可能性(例如,父母失业、婚姻冲突、丧亲之痛)。这种风险的聚集只会随着时间的推移而显现,因此早期干预至关重要[(Wade,2020)][2]。早期干预有助于防止年轻人达到危机点,并降低成年后长期精神疾病的可能性(RCON 2017)。在COVID-19之后,英国开发创新的预防、干预和服务提供方法至关重要。MeeTwo是一款屡获殊荣的同龄人支持应用程序,适用于11-25岁的人群。它已经支持了35,000名年轻人,并在NHS应用程序库中有特色。MeeTwo Connect是一项在封锁期间推出的新服务,它使年轻人能够从应用程序中连接到他们的学校,大学或NHS心理健康提供者。MeeTwo和MeeTwo Connect是创新的,因为它们提供了随时随地访问多种可互操作的心理支持选项。MeeTwo数据集于2017年推出,现在已经足够大,可以纵向深入了解疫情的影响。我们迫切需要开发一套数据报告工具,并进行独立的影响评估,以便我们能够充分利用我们数据的价值。机器学习和先进的数据分析技术的整合将提高对COVID-19后青少年心理健康的理解,并提高我们帮助用户获得适当服务的能力。该项目直接解决COVID-19引起的心理健康问题。通过更好地了解我们的数据,我们可以确定COVID-19如何损害青少年的心理健康,并按问题、地点、性别和年龄提供有针对性的支持。早期干预的37%的年轻人提到CAMHS,但出院后的评估将削减CAMHS等待名单。在2017/18年度,69%的被转介到CAMHS的年轻人在一年内没有接受治疗(儿童专员2018)。为所有年轻人提供易于获得的,高质量的,基于证据的心理帮助将减轻学校和大学辅导员,CAMHS和IAPT的负担;释放辅导员和临床医生,专注于最需要的人。与本研究一起开发的数据报告工具将使与机构共享数据更容易,以告知和改善其服务。这个为期9个月的实验/工业研究项目与安娜弗洛伊德中心和Oxleas NHS基金会信托合作,将确保MeeTwo Connect完全具备在COVID-19后复苏中发挥主导作用。[0]:https://osf.io/v7f3q/[1]:https://www.ucl.ac.uk/evidence-based-practice-unit/sites/evidence-based-practice-unit/files/coronavirus_emerging_evidence_issue_2.pdf [2]:https://ucl-new-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay? docid=TN_elsevier_sdoi_10_1016_j_psychres_2020_113143&context=PC&vid=UCL_VU2?= en_US&search_scope=CSCOP_UCL& adapter =primo_central_multiple_fe&tab=local&query= any,contains,mental%20health%20youth%20covid&offset =0
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 33.68万 - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 33.68万 - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
$ 33.68万 - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 33.68万 - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 33.68万 - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
$ 33.68万 - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 33.68万 - 项目类别:
Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
- 批准号:
2879865 - 财政年份:2027
- 资助金额:
$ 33.68万 - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 33.68万 - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 33.68万 - 项目类别:
Studentship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于高频信息下高维波动率矩阵估计及应用
- 批准号:71901118
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
半参数空间自回归面板模型的有效估计与应用研究
- 批准号:71961011
- 批准年份:2019
- 资助金额:16.0 万元
- 项目类别:地区科学基金项目
高频数据波动率统计推断、预测与应用
- 批准号:71971118
- 批准年份:2019
- 资助金额:50.0 万元
- 项目类别:面上项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
体数据表达与绘制的新方法研究
- 批准号:61170206
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
一类新Regime-Switching模型及其在金融建模中的应用研究
- 批准号:11061041
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Dissociating respiratory depression and analgesia via a data-driven model of interacting respiratory and pain networks
通过呼吸和疼痛网络相互作用的数据驱动模型分离呼吸抑制和镇痛
- 批准号:
10644300 - 财政年份:2023
- 资助金额:
$ 33.68万 - 项目类别:
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
- 批准号:
10727356 - 财政年份:2023
- 资助金额:
$ 33.68万 - 项目类别:
Targeting PLK1 in RAS mutant chronic myelomonocytic leukemia
RAS 突变型慢性粒单核细胞白血病中的靶向 PLK1
- 批准号:
10656778 - 财政年份:2023
- 资助金额:
$ 33.68万 - 项目类别:
Early-Stage Clinical Trial of AI-Driven CBCT-Guided Adaptive Radiotherapy for Lung Cancer
AI驱动的CBCT引导的肺癌适应性放疗的早期临床试验
- 批准号:
10575081 - 财政年份:2023
- 资助金额:
$ 33.68万 - 项目类别:
Semiconductor Biomaterials to Speed Bone Healing: A Bioengineering-Driven Approach
半导体生物材料加速骨骼愈合:生物工程驱动的方法
- 批准号:
10587508 - 财政年份:2023
- 资助金额:
$ 33.68万 - 项目类别:
"DNMT and TET1 reprogramming as a targetable mechanism of resistance in advanced prostate cancer"
“DNMT 和 TET1 重编程作为晚期前列腺癌的靶向耐药机制”
- 批准号:
10681632 - 财政年份:2023
- 资助金额:
$ 33.68万 - 项目类别:
MECHANISMS OF VISCERAL PAIN DRIVEN BY SMALL INTESTINAL MICROBIOTA
小肠微生物驱动内脏疼痛的机制
- 批准号:
10836298 - 财政年份:2023
- 资助金额:
$ 33.68万 - 项目类别:
BRITE-Eye: An integrated discovery engine for CNS therapeutic targets driven by high throughput genetic screens, functional readouts in human neurons, and machine learning
BRITE-Eye:由高通量遗传筛选、人类神经元功能读数和机器学习驱动的中枢神经系统治疗靶点的集成发现引擎
- 批准号:
10699137 - 财政年份:2023
- 资助金额:
$ 33.68万 - 项目类别:
Therapeutic targeting of master regulators in non-canonical AR driven advanced lethal prostate cancers
非经典 AR 驱动的晚期致命性前列腺癌中主调节因子的治疗靶向
- 批准号:
10737204 - 财政年份:2023
- 资助金额:
$ 33.68万 - 项目类别:
Novel synthetic lethality strategy for TP53 mutant colorectal cancer
TP53突变结直肠癌的新型合成致死策略
- 批准号:
10718572 - 财政年份:2023
- 资助金额:
$ 33.68万 - 项目类别: