Lyophilization of proteins - an in-situ study on structural changes and molecular interactions

蛋白质冻干——结构变化和分子相互作用的原位研究

基本信息

  • 批准号:
    BB/G010277/1
  • 负责人:
  • 金额:
    $ 60.82万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

More and more therapeutic proteins are getting into market due to the rapid development of biotechnology. Most of these protein macromolecules are inherantly unstable and it is important to stabilise them to preserve sufficient shelf life for storage and transport. These macro functional molecules have several levels of structure, referred to as primary, secondary, tertiary and quaternary structure, and their structure is directly linked to their functions. Stablising their structure often preserves their functions. This is usually done by adding various stablisers (excipients) and processing them into a stable status - a process referred as formulation. Almost all structural changes involve interactions with water, and hence the primary approach to elongate shelf life is to reduce water availability and activity by preferably removing water completely and transferring the aqueous formulation into a dry powder, and the latter can be easily stored and transported at ambient temperature. As many proteins are sensitive to elevated temperature, freeze-drying has been the process of choice to accomplish acceptable shelf life for protein formulations. Freeze-drying or 'lyophilization' is a drying process where the solvent, usually water, is first frozen and then removed by sublimation at low temperature and low pressure (typically 6.6Pa to 66Pa). However, freeze drying can disrupt the stabilizing forces and allowing the molecule to unfold, denature and aggregate. Hence stable formulation and process design is required to avoid biological activity loss and possible immunogenic effect of the structurally and/or chemically altered protein molecules. Time and material consuming 'trial-and-error' approaches adding excipients that have the potential to stabilize, e.g. saccharides, and/or varying the freeze-drying conditions are usually used to address stability issues. However, neither the mechanisms of stabilisation nor the relative contributions of each individual stress during freeze-drying are completely understood. The knowledge and understanding of when the degradation of proteins occur during lyophilization would be beneficial in designing more stable formulations and optimizing the freezing-drying process from a product quality perspective. A technical challenge has been how to identify the protein molecular structures and characterise their interactions with excipients during each stage of freeze drying. In this project we will adopt two advanced imaging techniques, (i) focal plane array (FPA)- Fourier Transform Infrared Spectroscopy (FTIR), which provides protein structural information, and (ii) multiphton microscopy (MPM), which extends the study into three dimensional for the in situ real-time study of freeze drying at well defined protocols provided by a cryostage. The data on interactions between proteins and stabilizing excipients as well as on the protein secondary structure, at micron and nanometre scales, during cooling, freezing and drying will be obtained, which will lead to better formulation. The results will be validated with industrial lyophilisation process and we will develop practical guidance on protein formulation.
随着生物技术的飞速发展,越来越多的治疗蛋白进入市场。这些蛋白质大分子中的大多数都是天生不稳定的,因此稳定它们以保持足够的储存和运输保质期是很重要的。这些宏观功能分子有几个层次的结构,分别是一级、二级、三级和四级结构,它们的结构与它们的功能直接相关。建立它们的结构往往能保留它们的功能。这通常是通过添加各种稳定剂(赋形剂)并将其加工成稳定状态来完成的-这一过程称为配方。几乎所有的结构变化都涉及与水的相互作用,因此延长保质期的主要方法是通过完全去除水并将含水配方转化为干粉来降低水的可用性和活性,而干粉可以很容易地在室温下储存和运输。由于许多蛋白质对高温很敏感,冷冻干燥一直是蛋白质配方实现可接受的保质期的选择。冷冻干燥或“冻干”是一种干燥过程,首先将溶剂(通常是水)冷冻,然后在低温和低压(通常为6.6Pa至66Pa)下通过升华除去。然而,冷冻干燥会破坏稳定力,使分子展开、变性和聚集。因此,需要稳定的配方和工艺设计,以避免结构和/或化学改变的蛋白质分子的生物活性损失和可能的免疫原性效应。通常使用添加具有稳定潜力的赋形剂(例如糖)和/或改变冷冻干燥条件的“试错”方法来解决稳定性问题。然而,无论是稳定的机制,还是在冷冻干燥过程中每个个体应力的相对贡献,都没有被完全理解。了解蛋白质在冻干过程中何时发生降解,将有助于从产品质量的角度设计更稳定的配方和优化冻干工艺。技术上的挑战是如何在冷冻干燥的每个阶段识别蛋白质分子结构并表征它们与辅料的相互作用。在这个项目中,我们将采用两种先进的成像技术,(i)焦平面阵列(FPA)-傅立叶变换红外光谱(FTIR),它提供蛋白质结构信息,(ii)多光子显微镜(MPM),它将研究扩展到三维,以便在由冷冻台提供的明确协议下对冷冻干燥进行现场实时研究。在冷却、冷冻和干燥过程中,蛋白质与稳定赋形剂之间的相互作用以及蛋白质在微米和纳米尺度上的二级结构的数据将得到,这将导致更好的配方。结果将通过工业冻干工艺进行验证,我们将开发有关蛋白质配方的实用指导。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Osmotic tolerance and membrane permeability characteristics of in-suspension and adherent osteoblasts
悬浮和贴壁成骨细胞的渗透耐受性和膜通透性特征
RGDS-fuctionalized alginates improve the survival rate of encapsulated embryonic stem cells during cryopreservation.
RGDS 功能化海藻酸盐可提高冷冻保存过程中封装胚胎干细胞的存活率。
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sambu S
  • 通讯作者:
    Sambu S
Effect of various freezing solutions on cryopreservation of mesenchymal stem cells from different animal species.
不同冷冻溶液对不同动物种间充质干细胞冻存的影响。
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu Y
  • 通讯作者:
    Liu Y
Effects of osmotic and cold shock on adherent human mesenchymal stem cells during cryopreservation.
  • DOI:
    10.1016/j.jbiotec.2012.09.004
  • 发表时间:
    2012-12
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Xia Xu;Yang Liu;Z. Cui;Yuping Wei;Liang Zhang
  • 通讯作者:
    Xia Xu;Yang Liu;Z. Cui;Yuping Wei;Liang Zhang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhanfeng Cui其他文献

Hypoxic culture and expansion of mesenchymal stem cells in airlift loop hollow fiber membrane bioreactor
缺氧培养和间充质干细胞在气升环流中空纤维膜生物反应器中的扩增
  • DOI:
    10.1038/cr.2008.259
  • 发表时间:
    2008-08-04
  • 期刊:
  • 影响因子:
    25.900
  • 作者:
    Xiangqin Li;Tianqing Liu;Kedong Song;Xuehu Ma;Zhanfeng Cui
  • 通讯作者:
    Zhanfeng Cui
Characterization of photosystem I from spinach: effect of solution pH
菠菜光系统 I 的表征:溶液 pH 值的影响
  • DOI:
    10.1007/s11120-012-9737-6
  • 发表时间:
    2012-04
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Jianguo Liu;Xuefang Zhang;Meng Wang;Jing Liu;Meiwen Cao;Jianren Lu;Zhanfeng Cui
  • 通讯作者:
    Zhanfeng Cui
3D Bio-printing:An Emerging Technology Full of Opportunities and Challenges
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
  • 作者:
    Bin Zhang;Yichen Luo;Liang Ma;Lei Gao;Yuting Li;Qian Xue;Huayong Yang;Zhanfeng Cui
  • 通讯作者:
    Zhanfeng Cui
Chemical looping based Low-pressure ammonia synthesis
  • DOI:
    10.1016/j.cej.2024.157321
  • 发表时间:
    2024-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Hangzuo Guo;Alexander R.P. Harrison;Mingchen Gao;Xusheng Zhang;Qicheng Chen;Zhanfeng Cui;Binjian Nie
  • 通讯作者:
    Binjian Nie
Strengths, weaknesses, and applications of computational axial lithography in tissue engineering Comments on B. E. Kelly et al., Volumetric additive manufacturing via tomographic reconstruction. Science. 363,1075-1079 (2019)
计算轴向光刻在组织工程中的优点、缺点和应用对 B. E. Kelly 等人通过断层扫描重建体积增材制造的评论。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bin Zhang;Lei Gao;Qian Xue;Zhanfeng Cui;Liang Ma;Huayong Yang
  • 通讯作者:
    Huayong Yang

Zhanfeng Cui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhanfeng Cui', 18)}}的其他基金

Development of a high-throughput perfused three dimensional cell culture platform for stem cell study and drug testing
开发用于干细胞研究和药物测试的高通量灌注三维细胞培养平台
  • 批准号:
    BB/L003961/1
  • 财政年份:
    2013
  • 资助金额:
    $ 60.82万
  • 项目类别:
    Research Grant
Engineering human neural networks
工程人类神经网络
  • 批准号:
    BB/H008608/1
  • 财政年份:
    2010
  • 资助金额:
    $ 60.82万
  • 项目类别:
    Research Grant
Development of perfused multiple micro-bioreactors (TissueFlux.TM)
灌注式多个微生物反应器的开发(TissueFlux.TM)
  • 批准号:
    BB/D525772/1
  • 财政年份:
    2006
  • 资助金额:
    $ 60.82万
  • 项目类别:
    Research Grant
Cryopreservation of stem cells
干细胞的冷冻保存
  • 批准号:
    BB/D014751/1
  • 财政年份:
    2006
  • 资助金额:
    $ 60.82万
  • 项目类别:
    Research Grant

相似国自然基金

SOD1介导星形胶质细胞活化调控hNSC移植细胞存活的机制研究
  • 批准号:
    82372136
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
PCBP1和PCBP2调控cGAS的相变和酶活的机制研究
  • 批准号:
    32370928
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
自噬外泌体的鉴定及形成机制研究
  • 批准号:
    32100544
  • 批准年份:
    2021
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
热应激通过MAPK信号通路介导Vγ9Vδ2 T细胞抗肿瘤活性调控作用研究
  • 批准号:
    32000534
  • 批准年份:
    2020
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
LMD-2 蛋白对秀丽线虫溶酶体相关细胞器生成与动态调控机制的研究
  • 批准号:
    31960143
  • 批准年份:
    2019
  • 资助金额:
    42.0 万元
  • 项目类别:
    地区科学基金项目
未闭合自噬体与溶酶体融合的鉴定及意义
  • 批准号:
    91954125
  • 批准年份:
    2019
  • 资助金额:
    65.0 万元
  • 项目类别:
    重大研究计划
Rab10介导ATP8A1的TGN输出及其对内吞体运输影响的机制研究
  • 批准号:
    91954107
  • 批准年份:
    2019
  • 资助金额:
    73.0 万元
  • 项目类别:
    重大研究计划
VAPB-Rab5介导的内质网与内体互作在肌肉分化再生中的作用及机制研究
  • 批准号:
    91954121
  • 批准年份:
    2019
  • 资助金额:
    82.0 万元
  • 项目类别:
    重大研究计划
SNX6在神经活性依赖的AMPAR内体-质膜转运中的功能研究
  • 批准号:
    91954126
  • 批准年份:
    2019
  • 资助金额:
    91.0 万元
  • 项目类别:
    重大研究计划
通过与循环内体互作影响大致密核心颗粒生物发生的机制研究
  • 批准号:
    91954104
  • 批准年份:
    2019
  • 资助金额:
    82.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
  • 批准号:
    10555899
  • 财政年份:
    2023
  • 资助金额:
    $ 60.82万
  • 项目类别:
Engineering T cells to overcome inhibitory receptor signals that limit the efficacy of adoptive cell therapy against ovarian cancer
改造 T 细胞以克服抑制性受体信号,这些信号限制了过继性细胞疗法对卵巢癌的疗效
  • 批准号:
    10526155
  • 财政年份:
    2023
  • 资助金额:
    $ 60.82万
  • 项目类别:
In situ structural characterization of membrane proteins for drug development
用于药物开发的膜蛋白的原位结构表征
  • 批准号:
    2898988
  • 财政年份:
    2023
  • 资助金额:
    $ 60.82万
  • 项目类别:
    Studentship
Integrated Molecular and Cellular Drivers of Alveologenesis
肺泡发生的综合分子和细胞驱动因素
  • 批准号:
    10637764
  • 财政年份:
    2023
  • 资助金额:
    $ 60.82万
  • 项目类别:
HERV proteogenomics of narcotic-driven HIV latency
麻醉药驱动的 HIV 潜伏期的 HERV 蛋白质基因组学
  • 批准号:
    10675341
  • 财政年份:
    2023
  • 资助金额:
    $ 60.82万
  • 项目类别:
Illumination of TAAR2 Location, Function and Regulators
TAAR2 位置、功能和调节器的阐明
  • 批准号:
    10666759
  • 财政年份:
    2023
  • 资助金额:
    $ 60.82万
  • 项目类别:
Atlas for neuronal and glial cell types selectively vulnerable to proteinopathies during progression of Alzheimer's Disease
在阿尔茨海默病进展过程中选择性易受蛋白质病影响的神经元和神经胶质细胞类型图谱
  • 批准号:
    10667245
  • 财政年份:
    2023
  • 资助金额:
    $ 60.82万
  • 项目类别:
Molecular mechanisms of selective vulnerability of neurons to tauopathy
神经元选择性易损性的分子机制
  • 批准号:
    10667153
  • 财政年份:
    2023
  • 资助金额:
    $ 60.82万
  • 项目类别:
Fixed-Target Platforms for Time-Resolved Crystallography
用于时间分辨晶体学的固定目标平台
  • 批准号:
    10634328
  • 财政年份:
    2023
  • 资助金额:
    $ 60.82万
  • 项目类别:
Acquisition of a Zeiss LSM 900 confocal microscope with Airyscan 2 for an Imaging and Microscopy Core
购买配备 Airyscan 2 的 Zeiss LSM 900 共焦显微镜作为成像和显微镜核心
  • 批准号:
    10632858
  • 财政年份:
    2023
  • 资助金额:
    $ 60.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了