Metabolic basis of the borate cross-linking of rhamnogalacturonan-II a plant cell wall polysaccharide

植物细胞壁多糖鼠李糖半乳糖醛酸-II硼酸盐交联的代谢基础

基本信息

  • 批准号:
    BB/H000690/1
  • 负责人:
  • 金额:
    $ 48.31万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Unlike animals and microbes, plants have a clear requirement for the element boron (B), which they obtain from soluble boric acid naturally present in soil. This unique and agriculturally important feature of plant life is poorly understood biochemically, and will be explored here from several novel perspectives. Adequate boron is essential throughout the plant, but particularly in growing tissues; boron is thought to be central to the mechanism of plant cell expansion (growth). Although boron deficiency can be cured by fertilisers, excess boron in the soil is a serious and intractable agricultural problem in some places. Understanding why plants require boron, and why excess boron is toxic, will facilitate progress towards both a fundamental understanding of the mechanism of plant growth and the optimisation of crop yields. Boron is necessary for the plant to assemble normal cell walls, which are key to the mechanism of cell expansion. The principal role of the boron is to form a bridge between two molecules of a minor type of cell-wall pectin called rhamnogalacturonan-II (RGII). Although minor quantitatively, RGII evidently serves a major purpose in the life of the plant since its boron bridges are essential for plant growth. Previous work has revealed the exact atoms of RGII which are bridged by the boron atom. A second role of boron is in the proper functioning of the plant's membranes, for example controlling the uptake of other important nutrients such as potassium. Boron also seems to help the cell membrane to remain correctly attached to the cell wall. However, we don't yet know what is the particular molecule of the plant membrane that interacts with boron for these purposes. Despite our detailed knowledge of the (static) chemical structure of boron-RGII bridges in the plant cell wall, we know nothing about how the bridging process occurs: when and where in the cell, and whether catalysed by enzymes. This project will explore the (dynamic) bridging process, potentially leading to the discovery of highly novel enzyme activities: to date, there are no known enzymes that act on boron compounds. Specifically, we will work out at what stage in the 'career' of an RGII molecule, and where in the cell, it normally becomes boron-bridged in healthy plant tissues. We will also discover whether boron-RGII bridges are permanent or if the boron can later be re-cycled to different RGII molecules. Importantly, we do not yet know what the 'players' are in the boron-bridging process. We will explore the idea that the (negatively charged) RGII is 'chaperoned' by some other (positively charged) molecule at the moment of bridging; and we will test whether the boron used for making the bridge is donated by boric acid itself or by some special boron carrier such as a water-soluble sugar-related substance or a water-insoluble lipid. A boron-carrying lipid could in principle be the 'particular molecule of the plant membrane that interacts with boron', mentioned above. We will explore these possibilities, developing new methodologies where necessary. At this stage, the ideas outlined above are mainly hypotheses (for testing), not asserted as 'facts'. Some will turn out to be false starts and we will not waste time pursuing them beyond their useful lives. However, it is valuable to have such hypotheses in mind during the exploration of new scientific avenues. The impact of the knowledge generated in this project would allow us in the future to manipulate boron bridging and bridge severance in crop plants, thus potentially enhancing crop production on soils with excess or insufficient boron. This could be done either by plant breeding or by optimised use of borate-containing fertilisers.
与动物和微生物不同,植物对元素硼(B)有明确的需求,它们从土壤中天然存在的可溶性硼酸中获得。植物生命的这一独特的农业重要特征在生物化学上知之甚少,本文将从几个新的角度进行探讨。充足的硼在整个植物中是必不可少的,特别是在生长组织中;硼被认为是植物细胞扩展(生长)机制的核心。虽然缺硼可以通过施肥来治愈,但土壤中过量的硼在某些地方是一个严重而棘手的农业问题。了解为什么植物需要硼,以及为什么过量的硼是有毒的,将有助于对植物生长机制的基本理解和作物产量的优化。硼是植物组装正常细胞壁所必需的,这是细胞扩张机制的关键。硼的主要作用是在一种称为鼠李糖半乳糖醛酸-II(RGII)的次要类型的细胞壁果胶的两个分子之间形成桥梁。虽然数量上很小,但RGII显然在植物的生命中起着重要作用,因为它的硼桥对植物生长至关重要。先前的工作已经揭示了由硼原子桥接的RGII的确切原子。硼的第二个作用是植物膜的正常功能,例如控制其他重要营养素如钾的吸收。硼似乎也有助于细胞膜保持正确的细胞壁。然而,我们还不知道植物膜上与硼相互作用的特定分子是什么。尽管我们详细了解了植物细胞壁中硼-RGII桥的(静态)化学结构,但我们对桥接过程如何发生一无所知:何时何地在细胞中,以及是否由酶催化。该项目将探索(动态)桥接过程,可能导致发现高度新颖的酶活性:迄今为止,还没有已知的酶作用于硼化合物。具体来说,我们将研究RGII分子在“职业生涯”的哪个阶段,以及在细胞中的哪个阶段,它通常会在健康的植物组织中成为硼桥。我们还将发现硼-RGII桥是否是永久性的,或者硼是否可以在以后再循环为不同的RGII分子。重要的是,我们还不知道硼桥过程中的“参与者”是什么。我们将探讨的想法,(带负电荷的)RGII是由一些其他的(带正电荷的)分子在桥接的时刻“陪伴”;我们将测试是否硼用于使桥是由硼酸本身或一些特殊的硼载体,如水溶性糖相关物质或水不溶性脂质捐赠。载硼脂质原则上可以是上面提到的“与硼相互作用的植物膜的特定分子”。我们将探索这些可能性,并在必要时开发新的方法。在这个阶段,上面概述的想法主要是假设(用于测试),而不是断言为“事实”。有些将被证明是错误的开始,我们不会浪费时间追求他们超过其有用的生命。然而,在探索新的科学途径时,牢记这些假设是有价值的。该项目产生的知识的影响将使我们能够在未来操纵作物中的硼桥和桥切断,从而有可能提高硼过量或不足土壤上的作物产量。这可以通过植物育种或优化使用含硼酸盐的肥料来实现。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of UV-B filtration on the chemistry and decomposition of Fraxinus excelsior leaves
  • DOI:
    10.1016/j.soilbio.2011.12.010
  • 发表时间:
    2012-04
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    D. Messenger;S. Fry;S. Yamulki;A. McLeod
  • 通讯作者:
    D. Messenger;S. Fry;S. Yamulki;A. McLeod
Boron bridging of rhamnogalacturonan-II is promoted in vitro by cationic chaperones, including polyhistidine and wall glycoproteins.
  • DOI:
    10.1111/nph.13596
  • 发表时间:
    2016-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chormova D;Fry SC
  • 通讯作者:
    Fry SC
Arabinogalactan-Proteins as Boron-Acting Enzymes, Cross-Linking the Rhamnogalacturonan-II Domains of Pectin.
  • DOI:
    10.3390/plants12233921
  • 发表时间:
    2023-11-21
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Begum RA;Fry SC
  • 通讯作者:
    Fry SC
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Fry其他文献

Both sides of the scalpel: the patient and the surgeon view
手术刀的两面:患者和外科医生的视角
  • DOI:
    10.1038/s41585-019-0153-y
  • 发表时间:
    2019-02-18
  • 期刊:
  • 影响因子:
    14.600
  • 作者:
    Stephen Fry;Ben Challacombe
  • 通讯作者:
    Ben Challacombe
96. Ethiopian medicinal plants have <em>in vivo</em> anti-parasitic activity
  • DOI:
    10.1016/j.anscip.2021.03.097
  • 发表时间:
    2021-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ketema Tolossa;Spiridoula Athanasiadou;Stephen Fry;Jos Houdijk
  • 通讯作者:
    Jos Houdijk

Stephen Fry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Fry', 18)}}的其他基金

Hetero-trans-b-glucanase (HTG), a unique cell-wall remodelling enzyme from Equisetum: action and potential to enhance mechanical properties of cereals
杂反式 b-葡聚糖酶 (HTG),一种来自木贼属的独特细胞壁重塑酶:增强谷物机械性能的作用和潜力
  • 批准号:
    BB/N002458/1
  • 财政年份:
    2016
  • 资助金额:
    $ 48.31万
  • 项目类别:
    Research Grant
Selective chemical intervention in plant cell wall polysaccharide metabolism: consequences for cell expansion
植物细胞壁多糖代谢的选择性化学干预:对细胞扩张的影响
  • 批准号:
    BB/E013651/1
  • 财政年份:
    2007
  • 资助金额:
    $ 48.31万
  • 项目类别:
    Research Grant
Xyloglucans xyloglucan endotransglucosylase (XET) activity and arabinogalactan-protein (AGP)-like molecules: a new inter-relationship
木葡聚糖木葡聚糖内转葡糖基酶 (XET) 活性和阿拉伯半乳聚糖蛋白 (AGP) 样分子:一种新的相互关系
  • 批准号:
    BB/D00134X/1
  • 财政年份:
    2006
  • 资助金额:
    $ 48.31万
  • 项目类别:
    Research Grant

相似国自然基金

基于Volatility Basis-set方法对上海大气二次有机气溶胶生成的模拟
  • 批准号:
    41105102
  • 批准年份:
    2011
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
求解Basis Pursuit问题的数值优化方法
  • 批准号:
    11001128
  • 批准年份:
    2010
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
TB方法在有机和生物大分子体系计算研究中的应用
  • 批准号:
    20773047
  • 批准年份:
    2007
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

An Investigation of the Physiological Basis of Curiosity in Young Children and Adults
幼儿和成人好奇心生理基础的调查
  • 批准号:
    ES/Y007611/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.31万
  • 项目类别:
    Fellowship
The molecular basis of T cell receptor cross-reactivity between MHC and MR1
MHC 和 MR1 之间 T 细胞受体交叉反应的分子基础
  • 批准号:
    DP240102905
  • 财政年份:
    2024
  • 资助金额:
    $ 48.31万
  • 项目类别:
    Discovery Projects
Understanding the neural basis of hearing function and dysfunction in vivo.
了解体内听力功能和功能障碍的神经基础。
  • 批准号:
    BB/Y000374/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.31万
  • 项目类别:
    Research Grant
Defining the molecular basis of chloroplast transcription of photosynthetic genes
定义光合基因叶绿体转录的分子基础
  • 批准号:
    BB/Y003802/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.31万
  • 项目类别:
    Research Grant
The mechanistic basis of slow-fast phenotypic diversity and its functional and evolutionary significance in social groups
慢-快表型多样性的机制基础及其在社会群体中的功能和进化意义
  • 批准号:
    2241230
  • 财政年份:
    2024
  • 资助金额:
    $ 48.31万
  • 项目类别:
    Standard Grant
The molecular basis of viral tolerance in bats
蝙蝠病毒耐受的分子基础
  • 批准号:
    BB/Y003772/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.31万
  • 项目类别:
    Research Grant
The molecular basis of viral tolerance in bats
蝙蝠病毒耐受的分子基础
  • 批准号:
    BB/Y005473/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.31万
  • 项目类别:
    Research Grant
Investigating the molecular basis of basement membrane specialisation and basal surface organisation during epithelial tissue development
研究上皮组织发育过程中基底膜特化和基底表面组织的分子基础
  • 批准号:
    MR/Y012089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.31万
  • 项目类别:
    Research Grant
Conference: New horizons in language science: large language models, language structure, and the neural basis of language
会议:语言科学的新视野:大语言模型、语言结构和语言的神经基础
  • 批准号:
    2418125
  • 财政年份:
    2024
  • 资助金额:
    $ 48.31万
  • 项目类别:
    Standard Grant
Trustworthy Distributed Brain-inspired Systems: Theoretical Basis and Hardware Implementation
值得信赖的分布式类脑系统:理论基础和硬件实现
  • 批准号:
    EP/Y03631X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.31万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了