Hetero-trans-b-glucanase (HTG), a unique cell-wall remodelling enzyme from Equisetum: action and potential to enhance mechanical properties of cereals
杂反式 b-葡聚糖酶 (HTG),一种来自木贼属的独特细胞壁重塑酶:增强谷物机械性能的作用和潜力
基本信息
- 批准号:BB/N002458/1
- 负责人:
- 金额:$ 60.18万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
BACKGROUND AND PURPOSE We recently discovered a unique enzyme (HTG or hetero-trans-b-glucanase), found only in a group of non-flowering plants, the horsetails. Flowering plants lack HTG even though their cell walls contain the chain-like molecules which, at least in the test-tube, HTG can cut and re-join. We now aim to discover (a) what good HTG does horsetail plants, (b) the full range of 'cutting and re-joining' reactions that HTG can achieve, (c) what happens when HTG from horsetails is artificially transferred to crop plants. We predict that the horsetail enzyme will endow flowering crops, e.g. wheat, with the ability to strengthen their stems in a manner hitherto only available to horsetails. Such crops may acquire improved resistance to lodging (storm damage). OBJECTIVES AND EXPECTED OUTCOMESRemarkably, horsetail HTG is the only known enzyme from any living thing that can 'cut and re-join' molecules of cellulose, the major constituent of plant cell walls. It can graft a cellulose chain onto a chain of a different cell-wall building material called xyloglucan. HTG can also graft chains of a third such material (MLG or mixed-linkage glucan) onto xyloglucan. HTG can thus create cellulose-to-xyloglucan and MLG-to-xyloglucan linkages. The resulting 'hybrid' polymers are thought to strengthen horsetails. We will discover exactly when and where HTG is produced, and such linkages are formed, in horsetails. This will potentially give clues about HTG's natural roles. We will also discover what new reactions HTG can catalyse when mixed in the test-tube with diverse plant cell-wall polysaccharides. This may afford new 'hybrid' polymers, which when scaled up may be commercially valuable new materials. To further our fundamental knowledge of HTG, we will also investigate which of the enzyme's amino acids are important for its ability (in the test-tube) to re-configure cellulose and MLG. A major part of this project involves artificially introducing the horsetail's HTG activities into flowering plants, including both dicotyledons and cereals, and measuring the consequences. Our industrial collaborators (Bayer CropScience) will do this work in the case of wheat. We predict that any crop plants genetically transformed in this way will be able to create cellulose-to-xyloglucan linkages in their cell walls, and that cereals (which, unlike dicots, possess MLG as well as cellulose and xyloglucan) will in addition be able to make MLG-to-xyloglucan linkages. We will test these predictions experimentally. We will also test whether the HTG-endowed flowering plants are stronger, and whether they have an altered shape or size. We will quantify the plants' mechanical strength by measuring the force required to bend or break their stems. Any changes to the molecular architecture a plant's cell walls are likely to affect its growth and strength because of the pivotal roles that cell walls play in dictating these features. BENEFICIARIES OF THE PROJECTCereal varieties with stronger stems often suffer less lodging, but such strengthening is usually achieved by the plant growing thicker stems at the expense of lower grain yield. Artificially giving cereals HTG may form novel inter-polymer linkages in the cell wall and confer similar strengthening without significant increases in stem biomass and thus without compromising the harvest. Modifying cereals in this way would benefit plant breeders and farmers, as well as the general public, by improving the reliability of grain production in a changing climate as storms and heavy rains become more frequent. In addition, increasing knowledge of HTG's ability to reconfigure biomass materials, especially cellulose (the world's most abundant organic substance), offers biotechnologists novel opportunities to create new materials (e.g. for specialist papers and medical applications) via non-polluting 'green' processes.
背景和目的我们最近发现了一种独特的酶(HTG或异反式-β-葡聚糖酶),仅在一组非开花植物中发现,即木贼。开花植物缺乏HTG,即使它们的细胞壁含有链状分子,至少在试管中,HTG可以切割和重新连接。我们现在的目标是发现(a)HTG对马尾植物有什么好处,(B)HTG可以实现的“切割和重新连接”反应的全部范围,(c)当HTG从马尾人工转移到作物植物时会发生什么。我们预测,马尾酶将赋予开花作物,例如小麦,以迄今为止只有马尾才能获得的方式加强其茎的能力。这些作物可以获得更好的抗倒伏性(风暴损害)。值得注意的是,马尾HTG是已知的唯一一种来自任何生物的酶,可以“切割和重新连接”纤维素分子,纤维素是植物细胞壁的主要成分。它可以将纤维素链接枝到一种称为木葡聚糖的不同细胞壁建筑材料链上。HTG还可以将第三种这样的材料(MLG或混合键葡聚糖)的链接枝到木葡聚糖上。因此,HTG可以产生纤维素-木葡聚糖键和MLG-木葡聚糖键。由此产生的“混合”聚合物被认为可以加强马尾。我们将发现HTG产生的确切时间和地点,以及这种连接的形成,在马尾。这可能会给HTG的自然作用提供线索。我们还将发现HTG在试管中与各种植物细胞壁多糖混合时可以催化哪些新反应。这可以提供新的“混合”聚合物,当按比例放大时,其可以是具有商业价值的新材料。为了进一步我们的HTG的基本知识,我们还将调查哪些酶的氨基酸是重要的,其能力(在试管中)重新配置纤维素和MLG。该项目的一个主要部分涉及人工引入马尾的HTG活动到开花植物,包括双子叶植物和谷物,并测量的后果。我们的工业合作伙伴(拜耳作物科学)将在小麦方面开展这项工作。我们预测,以这种方式遗传转化的任何作物植物将能够在其细胞壁中产生纤维素-木葡聚糖键,并且谷物(与双子叶植物不同,其具有MLG以及纤维素和木葡聚糖)将另外能够产生MLG-木葡聚糖键。我们将通过实验来检验这些预测。我们还将测试HTG赋予的开花植物是否更强壮,以及它们是否改变了形状或大小。我们将通过测量使植物茎弯曲或折断所需的力来量化植物的机械强度。植物细胞壁分子结构的任何变化都可能影响其生长和强度,因为细胞壁在决定这些特征方面发挥着关键作用。项目的受益者具有较强的茎的谷物品种通常遭受较少的倒伏,但这种强化通常是通过植物生长较厚的茎以较低的谷物产量为代价来实现的。在不显著增加茎生物量的情况下,给予谷物HTG可在细胞壁中形成新的聚合物间键,并赋予类似的强化,从而不损害收获。以这种方式改变谷物将使植物育种者和农民以及公众受益,因为随着风暴和暴雨变得更加频繁,气候变化会提高谷物生产的可靠性。此外,随着对HTG重新配置生物质材料,特别是纤维素(世界上最丰富的有机物质)的能力的了解不断增加,生物技术专家有了通过无污染的“绿色”工艺创造新材料(例如,用于专业论文和医疗应用)的新机会。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Defining natural factors that stimulate and inhibit cellulose:xyloglucan hetero-transglucosylation.
- DOI:10.1111/tpj.15131
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Herburger K;Franková L;Pičmanová M;Xin A;Meulewaeter F;Hudson A;Fry SC
- 通讯作者:Fry SC
Developmental expression of the cucumber Cs-XTH1 and Cs-XTH3 genes, encoding xyloglucan endotransglucosylase/hydrolases, can be influenced by mechanical stimuli
编码木葡聚糖内转葡糖基酶/水解酶的黄瓜 Cs-XTH1 和 Cs-XTH3 基因的发育表达可能受到机械刺激的影响
- DOI:10.1007/s11738-018-2707-7
- 发表时间:2018
- 期刊:
- 影响因子:2.6
- 作者:Malinowski R
- 通讯作者:Malinowski R
Drought and Heat Differentially Affect XTH Expression and XET Activity and Action in 3-Day-Old Seedlings of Durum Wheat Cultivars with Different Stress Susceptibility.
- DOI:10.3389/fpls.2016.01686
- 发表时间:2016
- 期刊:
- 影响因子:5.6
- 作者:Iurlaro A;De Caroli M;Sabella E;De Pascali M;Rampino P;De Bellis L;Perrotta C;Dalessandro G;Piro G;Fry SC;Lenucci MS
- 通讯作者:Lenucci MS
Fruit softening: evidence for pectate lyase action in vivo in date (Phoenix dactylifera) and rosaceous fruit cell walls.
- DOI:10.1093/aob/mcab072
- 发表时间:2021-09-07
- 期刊:
- 影响因子:4.2
- 作者:Al Hinai TZS;Vreeburg RAM;Mackay CL;Murray L;Sadler IH;Fry SC
- 通讯作者:Fry SC
Fruit softening: evidence for rhamnogalacturonan lyase action in vivo in ripe fruit cell walls
- DOI:10.1093/aob/mcad197
- 发表时间:2024-01-05
- 期刊:
- 影响因子:4.2
- 作者:Al-Hinai,Thurayya Z. S.;Mackay,C. Logan;Fry,Stephen C.
- 通讯作者:Fry,Stephen C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Fry其他文献
Both sides of the scalpel: the patient and the surgeon view
手术刀的两面:患者和外科医生的视角
- DOI:
10.1038/s41585-019-0153-y - 发表时间:
2019-02-18 - 期刊:
- 影响因子:14.600
- 作者:
Stephen Fry;Ben Challacombe - 通讯作者:
Ben Challacombe
96. Ethiopian medicinal plants have <em>in vivo</em> anti-parasitic activity
- DOI:
10.1016/j.anscip.2021.03.097 - 发表时间:
2021-04-01 - 期刊:
- 影响因子:
- 作者:
Ketema Tolossa;Spiridoula Athanasiadou;Stephen Fry;Jos Houdijk - 通讯作者:
Jos Houdijk
Stephen Fry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Fry', 18)}}的其他基金
Metabolic basis of the borate cross-linking of rhamnogalacturonan-II a plant cell wall polysaccharide
植物细胞壁多糖鼠李糖半乳糖醛酸-II硼酸盐交联的代谢基础
- 批准号:
BB/H000690/1 - 财政年份:2010
- 资助金额:
$ 60.18万 - 项目类别:
Research Grant
Selective chemical intervention in plant cell wall polysaccharide metabolism: consequences for cell expansion
植物细胞壁多糖代谢的选择性化学干预:对细胞扩张的影响
- 批准号:
BB/E013651/1 - 财政年份:2007
- 资助金额:
$ 60.18万 - 项目类别:
Research Grant
Xyloglucans xyloglucan endotransglucosylase (XET) activity and arabinogalactan-protein (AGP)-like molecules: a new inter-relationship
木葡聚糖木葡聚糖内转葡糖基酶 (XET) 活性和阿拉伯半乳聚糖蛋白 (AGP) 样分子:一种新的相互关系
- 批准号:
BB/D00134X/1 - 财政年份:2006
- 资助金额:
$ 60.18万 - 项目类别:
Research Grant
相似国自然基金
以根菌素为模型的trans-AT PKS型聚酮类药物的组合生物合成研究
- 批准号:32371488
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
sRNA trans217介导III型分泌系统调控水稻白叶枯病菌毒性的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Trans-AT PKS来源的chejuenolides的生物合成研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
trans-menopause期骨质丢失相关肠道菌群调控PMOP发生的作用及生物学机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
中性粒细胞在体内条件下重编程为造血干祖细胞的研究
- 批准号:92068101
- 批准年份:2020
- 资助金额:80.0 万元
- 项目类别:重大研究计划
Trans-Hudson造山带西缘古元古代变质深熔作用和演化研究
- 批准号:42072224
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
小分子化合物促进肝细胞增殖和肝脏再生的研究
- 批准号:32000504
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Cis-trans异构对脂肪酸热氧化行为和HepG2细胞氧化损伤的影响研究
- 批准号:
- 批准年份:2020
- 资助金额:35 万元
- 项目类别:地区科学基金项目
成纤维细胞向心肌细胞的化学诱导转分化
- 批准号:31900518
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
CYP3A基因肝肠trans-eQTLs对肾移植患者他克莫司代谢的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
The mechanism of CELF1 upregulation and its role in the pathogenesis of Myotonic Dystrophy Type 1
CELF1上调机制及其在强直性肌营养不良1型发病机制中的作用
- 批准号:
10752274 - 财政年份:2024
- 资助金额:
$ 60.18万 - 项目类别:
Creativity, Community and Resilience: Participatory Action with Trans and Gender Diverse Youth, using Creative Methods
创造力、社区和韧性:使用创造性方法与跨性别和性别多元化青年一起参与行动
- 批准号:
AH/Z505791/1 - 财政年份:2024
- 资助金额:
$ 60.18万 - 项目类别:
Research Grant
自己耐性機構を有するtrans-AT PKS生合成遺伝子クラスター由来の新規抗生物質の探索
寻找具有自我抵抗机制的反式AT PKS生物合成基因簇衍生的新型抗生素
- 批准号:
24K08732 - 财政年份:2024
- 资助金额:
$ 60.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Trans Performance Now: Glitching cisgenderism
现在的跨性别表现:顺性别主义的问题
- 批准号:
AH/X006999/1 - 财政年份:2024
- 资助金额:
$ 60.18万 - 项目类别:
Fellowship
CAREER: Elucidating trans-kingdom horizontal gene transfer mechanisms to improve plant genetic engineering
职业:阐明跨界水平基因转移机制以改进植物基因工程
- 批准号:
2340175 - 财政年份:2024
- 资助金额:
$ 60.18万 - 项目类别:
Continuing Grant
Trans-制御型mRNA構造体によるタンパク質翻訳制御手法の開発
利用反式调节mRNA结构开发蛋白质翻译控制方法
- 批准号:
24K17786 - 财政年份:2024
- 资助金额:
$ 60.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Pan-ancestry approaches to understand the genetic and environmental contributors to mental health in children and youth
通过泛祖方法了解儿童和青少年心理健康的遗传和环境因素
- 批准号:
498293 - 财政年份:2023
- 资助金额:
$ 60.18万 - 项目类别:
Operating Grants
Molecular mechanisms of trans-generational epigenome control
跨代表观基因组控制的分子机制
- 批准号:
23H00365 - 财政年份:2023
- 资助金额:
$ 60.18万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Reexamining Discourses, Representations, and Modes of Expression in Late Meiji Magazines: a Cross-disciplinary Media Study from a Trans-Russo-Japanese War Perspective
重新审视明治后期杂志中的话语、表述和表达方式:从跨俄日战争的角度进行跨学科媒体研究
- 批准号:
23H00619 - 财政年份:2023
- 资助金额:
$ 60.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)