Analysis of the mechanism of cytoskeletal reorganisation in plants in response to pathogenic fungi

植物响应病原真菌的细胞骨架重组机制分析

基本信息

  • 批准号:
    BB/H017569/1
  • 负责人:
  • 金额:
    $ 50.93万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

The actin cytoskeleton is an organised network of protein filaments that controls many cellular processes including the movement of organelles and vesicles within the cell. These filaments consist of chains of individual actin proteins. Importantly, this network is dynamic, as actin proteins can rapidly change from being free monomers in the cell cytoplasm (known as G-actin) to being incorporated into filaments (F-actin) and vice-versa. The assembly and disassembly of actin filaments is under the control of actin binding proteins (ABPs) which are in turn under the control of cell signalling pathways. A change in the environment of the cell or a developmental cue can stimulate signalling networks to cause the re-organisation of actin filaments through localised changes in ABP behaviour. Each ABP has a specific function and their activities are often intertwined in cooperative and/or competitive interactions. Some of these proteins nucleate actin filaments, others modulate monomer or filament dynamics through their binding to G-actin and/or F-actin. The state of the actin network at any given time and in any given space will depend upon the summation of the activities of each of these proteins. Plant pathogens cause damaging diseases of economically important plants, with approximately 6% of the UK wheat harvest currently being lost to disease. The actin cytoskeleton is a key element of plant defence against pathogens. At the earliest stages of pathogen invasion the actin network is stimulated to reorganise so that vesicles containing wall-forming materials can be transported to the site of the infection threat to thicken and reinforce the plant cell wall. If the actin cytoskeleton is broken down the chances of successful infection are greatly increased. This project is designed to understand the molecular events controlling this response of actin and its associated proteins to pathogen attack. How it works is currently unknown, but we do have an indication that ABPs are important and that their activity can protect plants from disease. One of the few disease resistance genes in cereals to a particularly virulent pathogen Puccinia graminis Ug99 is rpg4, and this encodes a small G-actin and F-actin modulating protein called Actin Depolymerising Factor (ADF). ADF is just one of a plethora of ABPs that control the actin network and we have evidence that at least one other group of ABPs is involved; the actin-nucleating formin proteins. Interestingly, formin proteins are controlled in animal and fungal cells by signal transduction pathways that do not exist in plants. Plants have adapted their formins to plant specific needs and we have found that a particular plant formin, (AtFH4), interacts with an enzyme called a respiratory burst oxidase that has an established role in signalling in the defence of plants against pathogens and this programme also aims to understand the functional significance of this interaction. For our experiments we use model systems and the model we use here for plant pathogen attack is Arabidopsis thaliana. An important question is whether this model relates to real-life situations in the UK's most important crop species. Here we will examine whether similar mechanisms of actin reorganisation in plant defence occur in cereals in response to disease, and we will use wheat for this purpose.
肌动蛋白细胞骨架是一种有组织的蛋白质细丝网络,控制着许多细胞过程,包括细胞器和囊泡在细胞内的运动。这些细丝由单个肌动蛋白的链组成。重要的是,这种网络是动态的,因为肌动蛋白可以迅速从细胞质中的游离单体(称为G-肌动蛋白)转变为被并入细丝(F-肌动蛋白),反之亦然。肌动蛋白丝的组装和分解是在肌动蛋白结合蛋白(ABP)的控制下,而ABP又是在细胞信号传导通路的控制下。细胞环境的变化或发育线索可以刺激信号网络,通过ABP行为的局部变化引起肌动蛋白丝的重组。每个ABP都有特定的功能,它们的活动往往在合作和/或竞争的互动中交织在一起。这些蛋白质中的一些使肌动蛋白丝成核,另一些通过与G-肌动蛋白和/或F-肌动蛋白结合来调节单体或丝动力学。肌动蛋白网络在任何给定时间和给定空间的状态将取决于这些蛋白质中的每一个的活性的总和。植物病原体会对重要的经济作物造成破坏性疾病,目前英国约有6%的小麦收成因病害而损失。肌动蛋白细胞骨架是植物防御病原体的关键因素。在病原体入侵的最早阶段,肌动蛋白网络被刺激重组,使得含有壁形成材料的囊泡可以被运输到感染威胁的部位,以破坏和加强植物细胞壁。如果肌动蛋白细胞骨架被破坏,成功感染的机会就会大大增加。本项目旨在了解控制肌动蛋白及其相关蛋白对病原体攻击的反应的分子事件。它是如何工作的目前尚不清楚,但我们确实有迹象表明ABPs很重要,它们的活性可以保护植物免受疾病的侵害。rpg 4是谷物中对特别强的病原体禾柄锈菌Ug 99的少数抗病基因之一,其编码称为肌动蛋白解聚因子(ADF)的小G-肌动蛋白和F-肌动蛋白调节蛋白。ADF只是众多控制肌动蛋白网络的ABPs之一,我们有证据表明至少还有另一组ABPs参与其中;肌动蛋白成核蛋白。有趣的是,在动物和真菌细胞中,蛋白质是由植物中不存在的信号转导途径控制的。植物已经适应了它们的formin以适应植物的特定需求,我们发现一种特定的植物蛋白(AtFH 4)与一种称为呼吸爆发氧化酶的酶相互作用,该酶在植物防御病原体的信号传导中具有既定的作用,该计划还旨在了解这种相互作用的功能意义。对于我们的实验,我们使用模型系统,我们在这里用于植物病原体攻击的模型是拟南芥。一个重要的问题是,这个模型是否与英国最重要的作物物种的现实情况有关。在这里,我们将研究是否类似的肌动蛋白重组机制在植物防御中发生在谷物中,以应对疾病,我们将使用小麦为此目的。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
NETWORKED 3B: a novel protein in the actin cytoskeleton-endoplasmic reticulum interaction.
  • DOI:
    10.1093/jxb/erx047
  • 发表时间:
    2017-03-01
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Wang P;Hussey PJ
  • 通讯作者:
    Hussey PJ
An Immune-Responsive Cytoskeletal-Plasma Membrane Feedback Loop in Plants.
  • DOI:
    10.1016/j.cub.2018.05.014
  • 发表时间:
    2018-07-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sassmann S;Rodrigues C;Milne SW;Nenninger A;Allwood E;Littlejohn GR;Talbot NJ;Soeller C;Davies B;Hussey PJ;Deeks MJ
  • 通讯作者:
    Deeks MJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

P Hussey其他文献

P Hussey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('P Hussey', 18)}}的其他基金

A Super-Resolution Microscope for use by Plant Cell Biologists, N8 partners, Durham Scientists and Collaborators.
供植物细胞生物学家、N8 合作伙伴、达勒姆科学家和合作者使用的超分辨率显微镜。
  • 批准号:
    BB/L014092/1
  • 财政年份:
    2014
  • 资助金额:
    $ 50.93万
  • 项目类别:
    Research Grant
Function of ABP195 member of a new small 'superfamily' of plant actin binding proteins; involvement in actin organisation and signalling
植物肌动蛋白结合蛋白新小“超家族”ABP195成员的功能;
  • 批准号:
    BB/G006334/1
  • 财政年份:
    2009
  • 资助金额:
    $ 50.93万
  • 项目类别:
    Research Grant
A spinning disk confocal microscope for live cell imaging in plant animal and fungal cells.
用于植物、动物和真菌细胞活细胞成像的转盘共聚焦显微镜。
  • 批准号:
    BB/F010788/1
  • 财政年份:
    2008
  • 资助金额:
    $ 50.93万
  • 项目类别:
    Research Grant
Analysis of the signalling function of Arabidopsis cyclase associated protein (CAP1) and its interaction with a novel transmembrane protein (AtCIP).
分析拟南芥环化酶相关蛋白 (CAP1) 的信号功能及其与新型跨膜蛋白 (AtCIP) 的相互作用。
  • 批准号:
    BB/E006256/1
  • 财政年份:
    2007
  • 资助金额:
    $ 50.93万
  • 项目类别:
    Research Grant

相似国自然基金

CBP/p300-HADH轴在基础胰岛素分泌调节中的作用和机制研究
  • 批准号:
    82370798
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
糖尿病ED中成纤维细胞衰老调控内皮细胞线粒体稳态失衡的机制研究
  • 批准号:
    82371634
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
TIPE2调控巨噬细胞M2极化改善睑板腺功能障碍的作用机制研究
  • 批准号:
    82371028
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
PRNP调控巨噬细胞M2极化并减弱吞噬功能促进子宫内膜异位症进展的机制研究
  • 批准号:
    82371651
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
生物钟核受体Rev-erbα在缺血性卒中神经元能量代谢中的改善作用及机制研究
  • 批准号:
    82371332
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
慢性炎症诱发骨丢失的机制及外泌体靶向治疗策略研究
  • 批准号:
    82370889
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
5'-tRF-GlyGCC通过SRSF1调控RNA可变剪切促三阴性乳腺癌作用机制及干预策略
  • 批准号:
    82372743
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
超声驱动压电效应激活门控离子通道促眼眶膜内成骨的作用及机制研究
  • 批准号:
    82371103
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
骨髓ISG+NAMPT+中性粒细胞介导抗磷脂综合征B细胞异常活化的机制研究
  • 批准号:
    82371799
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
  • 批准号:
    82371616
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

Investigating the mechanism of self-organized cortical patterning in an artificial cortex
研究人工皮质中自组织皮质模式的机制
  • 批准号:
    10861462
  • 财政年份:
    2023
  • 资助金额:
    $ 50.93万
  • 项目类别:
Mechanism of cytoskeletal transport and transcription-coupled DNA repair
细胞骨架运输和转录偶联DNA修复机制
  • 批准号:
    10405228
  • 财政年份:
    2022
  • 资助金额:
    $ 50.93万
  • 项目类别:
Mechanism of cytoskeletal transport and transcription-coupled DNA repair
细胞骨架运输和转录偶联DNA修复机制
  • 批准号:
    10669570
  • 财政年份:
    2022
  • 资助金额:
    $ 50.93万
  • 项目类别:
A mechanism of skeletal muscle ER-mitochondria interaction and bioenergetics modulation
骨骼肌 ER-线粒体相互作用和生物能学调节机制
  • 批准号:
    10464664
  • 财政年份:
    2022
  • 资助金额:
    $ 50.93万
  • 项目类别:
Mechanism of a novel approach for platelet cold storage
血小板冷藏新方法的机制
  • 批准号:
    10494385
  • 财政年份:
    2022
  • 资助金额:
    $ 50.93万
  • 项目类别:
Mechanism of a novel approach for platelet cold storage
血小板冷藏新方法的机制
  • 批准号:
    10682608
  • 财政年份:
    2022
  • 资助金额:
    $ 50.93万
  • 项目类别:
Investigating the mechanism of self-organized cortical patterning in an artificial cortex
研究人工皮质中自组织皮质模式的机制
  • 批准号:
    10656543
  • 财政年份:
    2022
  • 资助金额:
    $ 50.93万
  • 项目类别:
Investigating the mechanism of self-organized cortical patterning in an artificial cortex
研究人工皮质中自组织皮质模式的机制
  • 批准号:
    10514875
  • 财政年份:
    2022
  • 资助金额:
    $ 50.93万
  • 项目类别:
A mechanism of skeletal muscle ER-mitochondria interaction and bioenergetics modulation
骨骼肌 ER-线粒体相互作用和生物能调节机制
  • 批准号:
    10766531
  • 财政年份:
    2022
  • 资助金额:
    $ 50.93万
  • 项目类别:
Mechanism of cytoskeletal transport and transcription-coupled DNA repair
细胞骨架运输和转录偶联DNA修复机制
  • 批准号:
    10795265
  • 财政年份:
    2022
  • 资助金额:
    $ 50.93万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了