A Super-Resolution Microscope for use by Plant Cell Biologists, N8 partners, Durham Scientists and Collaborators.

供植物细胞生物学家、N8 合作伙伴、达勒姆科学家和合作者使用的超分辨率显微镜。

基本信息

  • 批准号:
    BB/L014092/1
  • 负责人:
  • 金额:
    $ 114.87万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

The first studies of biological structures were by the early pioneers of microscopy, Robert Hooke and Antoni van Leeuwenhoek, in the 17th century. Robert Hooke, in 1665, was the first to introduce the term "cell" when he was viewing the "boxes" he saw in slices of cork using one of the earliest optical compound microscopes (two lenses: an objective lens and an eye piece) that he developed. He probably didn't quite realise the significance of this discovery, as it was only when it became apparent that the great majority of organisms are composed of cells that Cell Theory was born. Cell Theory, first proposed by M.J. Schleiden and Theodore Schwann in 1839, states that cells are of universal occurrence and are the basic units of an organism. This theory is still undisputed although, in those days, rivals tried. Over 300 years of microscope improvements have led to fascinating discoveries of how cells function and now fluorescence microscopy, a form of light microscopy where objects are tagged with light emitting dyes, has become an essential tool to study the biology of the cell. Many technical developments have led to greatly improved image quality but we are still faced with a limit in ultimate resolution when using a light microscope. Based on experiments and basic principles of physics, this 'diffraction limited resolution' was calculated by Ernst Abbe and Lord Rayleigh in the late 19th century and is approximately half the wavelength of the light being used. However, much of the fundamental biology of the cell occurs below this limit, at the level of complexes in the range of tens to few hundred nm in size; that's 10,000x smaller than a human hair. Recently, a new generation of light microscopes, referred to as super-resolution microscopes (SRM) have been developed, which use several different methods to break through this limit. Although electron microscopes, which use beams of electrons rather than light, can magnify by hundreds of thousands of times, specimens are dead, fixed snapshots in time and require complex preparation procedures. SRM, however, can be used to look at living cells where multiple proteins or structures can be highlighted or labeled with different dyes in the same specimen. This proposal from Durham University is requesting funds to buy one of these SRMs, in particular one which is capable of several different SR methods, so that researchers have the tools to look at a diverse array of specimens. The new equipment will be used to address important structural and cell biological questions at the nanoscale, dramatically improving our understanding of many cellular systems. A main focus of the research using the new equipment will be on plants and crops, an area where SRM imaging has so far been limited. Specific areas which will be studied by the team in Durham include: resolving the interface between the cell's internal (cyto)skeleton with membranes a connection which is essential for cell growth; how the cytoskeleton's focus and organization changes at the site where a pathogen tries to invade the plant; how proteins and protein modifications involved in transmitting signals in the cell are arranged and their role in the plant immune response and also resolving the structures involved in the communication between the nucleus and the cytoplasm. Importantly, the new equipment will be part of the Durham Centre for Bioimaging technology where it will be used by Durham scientists working on a range of cell systems including animal cells, fungi, alga and bacteria, also scientists that make up the UK Plant Cell Biology Community where we will share both our expertise and the facilities in order to optimize technologies for SRM, and scientists within the N8 partnership of research intensive universities in the north of England (Durham, Lancaster, Leeds, Liverpool, Manchester, Newcastle, Sheffield and York).
对生物结构的第一次研究是由早期的显微镜先驱罗伯特·胡克和安东尼·货车·列文虎克在世纪进行的。1665年,罗伯特·胡克(Robert Hooke)第一个引入了“细胞”这个术语,当时他正在使用他开发的最早的光学复合显微镜(两个镜头:一个物镜透镜和一个目镜)观察软木切片中的“盒子”。他可能没有意识到这一发现的重要性,因为只有当它变得明显,绝大多数生物体是由细胞组成的细胞理论诞生。1839年,M. J. Schleiden和西奥多·施旺首先提出了细胞理论,认为细胞是普遍存在的,是生物体的基本单位。尽管当时竞争对手也尝试过,但这一理论仍然无可争议。超过300年的显微镜改进导致了细胞功能的迷人发现,现在荧光显微镜,一种用发光染料标记物体的光学显微镜,已成为研究细胞生物学的重要工具。许多技术的发展已经大大提高了图像质量,但在使用光学显微镜时,我们仍然面临着最终分辨率的限制。基于实验和物理学的基本原理,这种“衍射极限分辨率”是由Ernst Abbe和Rayleigh勋爵在世纪后期计算出来的,大约是所用光波长的一半。然而,细胞的大部分基本生物学都发生在这个极限以下,在几十到几百纳米大小的复合物水平上;这比人类头发小10,000倍。 最近,新一代的光学显微镜,被称为超分辨率显微镜(SRM)已经开发出来,它使用几种不同的方法来突破这一限制。虽然电子显微镜使用电子束而不是光,可以放大数十万倍,但样品是死的,及时固定的快照,需要复杂的准备程序。然而,SRM可用于观察活细胞,其中多个蛋白质或结构可以在同一标本中突出显示或用不同的染料标记。 这项来自达勒姆大学的提案要求资金购买其中一种SRMs,特别是一种能够使用多种不同SR方法的SRMs,以便研究人员能够使用各种工具来观察各种标本。新设备将用于解决纳米级的重要结构和细胞生物学问题,大大提高我们对许多细胞系统的理解。使用新设备的研究的主要重点将是植物和农作物,这是SRM成像迄今为止受到限制的领域。达勒姆的研究小组将研究的具体领域包括:解析细胞内部(细胞)骨架与细胞膜之间的界面--细胞生长所必需的连接;在病原体试图入侵植物的部位,细胞骨架的焦点和组织如何变化;蛋白质和蛋白质修饰如何参与细胞中信号的传递,它们在植物免疫反应中的作用,以及如何解决植物免疫反应中的蛋白质和蛋白质修饰,参与细胞核和细胞质之间通讯的结构。 重要的是,新设备将成为达勒姆生物成像技术中心的一部分,在那里,达勒姆的科学家将使用它来研究一系列细胞系统,包括动物细胞,真菌,真菌和细菌,也是组成英国植物细胞生物学社区的科学家,我们将分享我们的专业知识和设施,以优化SRM技术,以及英格兰北部研究密集型大学N8伙伴关系内的科学家(达勒姆、兰开斯特、利兹、利物浦、曼彻斯特、纽卡斯尔、谢菲尔德和约克)。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A silk purse from a sow's ear-bioinspired materials based on a-helical coiled coils.
一款丝绸钱包,采用母猪耳朵仿生材料制成,基于非螺旋线圈。
NETWORKED 3B: a novel protein in the actin cytoskeleton-endoplasmic reticulum interaction.
  • DOI:
    10.1093/jxb/erx047
  • 发表时间:
    2017-03-01
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Wang P;Hussey PJ
  • 通讯作者:
    Hussey PJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

P Hussey其他文献

P Hussey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('P Hussey', 18)}}的其他基金

Analysis of the mechanism of cytoskeletal reorganisation in plants in response to pathogenic fungi
植物响应病原真菌的细胞骨架重组机制分析
  • 批准号:
    BB/H017569/1
  • 财政年份:
    2011
  • 资助金额:
    $ 114.87万
  • 项目类别:
    Research Grant
Function of ABP195 member of a new small 'superfamily' of plant actin binding proteins; involvement in actin organisation and signalling
植物肌动蛋白结合蛋白新小“超家族”ABP195成员的功能;
  • 批准号:
    BB/G006334/1
  • 财政年份:
    2009
  • 资助金额:
    $ 114.87万
  • 项目类别:
    Research Grant
A spinning disk confocal microscope for live cell imaging in plant animal and fungal cells.
用于植物、动物和真菌细胞活细胞成像的转盘共聚焦显微镜。
  • 批准号:
    BB/F010788/1
  • 财政年份:
    2008
  • 资助金额:
    $ 114.87万
  • 项目类别:
    Research Grant
Analysis of the signalling function of Arabidopsis cyclase associated protein (CAP1) and its interaction with a novel transmembrane protein (AtCIP).
分析拟南芥环化酶相关蛋白 (CAP1) 的信号功能及其与新型跨膜蛋白 (AtCIP) 的相互作用。
  • 批准号:
    BB/E006256/1
  • 财政年份:
    2007
  • 资助金额:
    $ 114.87万
  • 项目类别:
    Research Grant

相似国自然基金

基于Resolution算法的交互时态逻辑自动验证机
  • 批准号:
    61303018
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Super-resolution microscope with fluorescence fluctuation and expansion gel imaging capabilities
具有荧光波动和膨胀凝胶成像功能的超分辨率显微镜
  • 批准号:
    524798474
  • 财政年份:
    2023
  • 资助金额:
    $ 114.87万
  • 项目类别:
    Major Research Instrumentation
Time- and space-super-resolution holographic microscope for label-free tissue dyanmics imaging
用于无标记组织动力学成像的时间和空间超分辨率全息显微镜
  • 批准号:
    23KF0186
  • 财政年份:
    2023
  • 资助金额:
    $ 114.87万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Acquisition of Zeiss LSM980 with Airyscan 2, a super-resolution point scanning confocal microscope
购买 Zeiss LSM980 和 Airyscan 2(超分辨率点扫描共焦显微镜)
  • 批准号:
    10632893
  • 财政年份:
    2023
  • 资助金额:
    $ 114.87万
  • 项目类别:
Spinning Disk Super Resolution Confocal Microscope for the Vanderbilt Brain Institute
范德比尔特脑研究所的转盘超分辨率共焦显微镜
  • 批准号:
    10721222
  • 财政年份:
    2023
  • 资助金额:
    $ 114.87万
  • 项目类别:
Elyra 7 Lattice SIM2 Super-Resolution Microscope
Elyra 7 Lattice SIM2 超分辨率显微镜
  • 批准号:
    10632816
  • 财政年份:
    2023
  • 资助金额:
    $ 114.87万
  • 项目类别:
Abberior 3D-STED microscope for super-resolution imaging
用于超分辨率成像的 Abberior 3D-STED 显微镜
  • 批准号:
    10630881
  • 财政年份:
    2023
  • 资助金额:
    $ 114.87万
  • 项目类别:
Equipment: MRI: Track # 2 Development of a high-speed super-resolution stimulated Raman scattering (SRS) microscope
设备: MRI:轨道
  • 批准号:
    2320437
  • 财政年份:
    2023
  • 资助金额:
    $ 114.87万
  • 项目类别:
    Continuing Grant
Super resolution microscope for live cell microscopy
用于活细胞显微镜检查的超分辨率显微镜
  • 批准号:
    514686987
  • 财政年份:
    2022
  • 资助金额:
    $ 114.87万
  • 项目类别:
    Major Research Instrumentation
Super-resolution spinning disk confocal microscope for Dartmouth Life Sciences
用于达特茅斯生命科学的超分辨率转盘共焦显微镜
  • 批准号:
    10427997
  • 财政年份:
    2022
  • 资助金额:
    $ 114.87万
  • 项目类别:
Automated Multiscale Super-resolution Confocal Microscope
自动化多尺度超分辨率共焦显微镜
  • 批准号:
    10431707
  • 财政年份:
    2022
  • 资助金额:
    $ 114.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了