Improving existing vaccine platforms to minimise the economic impact of emerging Bluetongue virus (BTV) serotypes

改进现有疫苗平台,尽量减少新兴蓝舌病毒 (BTV) 血清型的经济影响

基本信息

  • 批准号:
    BB/I003886/1
  • 负责人:
  • 金额:
    $ 51.32万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

Bluetongue is a major infectious disease of livestock (sheep and cattle mainly) caused by a virus known as Bluetongue virus (BTV). BTV is transmitted from infected to uninfected animals by the biting midges. Historically, bluetongue has been described almost exclusively in temperate and tropical areas of the world where the warm temperatures favoured both the spread of the susceptible insect vector population and also the viral replication cycle within the vector. However, in the last decade BTV has spread extensively in Southern Europe and, unexpectedly, also in Northern Europe (including the United Kingdom) reaching well beyond its known geographical upper limits and causing serious problems to both animal health and the economy. Interestingly there are worldwide 24 different 'types' (known as 'serotypes') of BTV. Basically, these different serotypes possess slightly different proteins that form the outside shell of the viral particle. In essence bluetongue can be considered a single disease caused by 24 different viruses! This is because if an animal is vaccinated against serotype 1 of BTV for example(BTV-1), it will then be protected only against infection by BTV-1 but not against the other 23 BTV serotypes. Since 1998 there have been 13 BTV incursions into Europe of 9 different serotypes. The development of safe and effective inactivated vaccines has had an enormous beneficial impact in preventing and limiting the BTV epidemic. However, any significant incursion of a new serotype forces the selection of the relevant new virus for vaccine production. Because BTV is transmitted by an insect vector it has a seasonal pattern. Most bluetongue outbreaks will have a limited diffusion in the first vector season after introduction, but will spread considerably and cause extensive damage in the following year. Thus, the timeline of vaccine production can be absolutely critical to halting the spread of a newly introduced serotype. At present it takes approximately 1 to 6 months for a vaccine manufacturer to acquire a new BTV strain from the field and a further 14-20 months to develop, test and produce a new vaccine. Rapid production of vaccines will assure containment of bluetongue. For example, it has been estimated that the control of the BTV-8 outbreak in the UK saved the UK economy £ 485M and 10,000 jobs. That successful vaccination campaign saved the UK from its second BTV-8 'season'. However, the previous year there was no BTV-8 vaccine ready to halt the devastating outbreak of the disease in its second year in several Central European countries. The overarching objectives of this proposal are to: (i) reduce the time needed to bring to market an appropriate vaccine for a newly introduced BTV serotype; (ii) collect the data necessary to determine (and optimize) the criteria of strain selection used in BTV vaccine preparations; (iii) engineer viruses that elicit an immune response able to protect against multiple BTV serotypes. By using new genetic engineering techniques, we will develop and characterize BTV 'synthetic' viruses that can function as 'off-the-shelf' strains for vaccine development. This system has the potential to reduce the time required by manufacturers to obtain a new strain from the field. We will study how these synthetic viruses function in tissue culture and their ability to induce a protective immunity in vaccinated sheep. In addition we will determine which portions of the BTV vaccines induce an immune response in the vaccinated animal and we will attempt to engineer viruses that can be used as vaccines to protect the animals against multiple seroptypes. The completion of this proposal offers the possibility to develop the tools to avoid in the future most of the economical damages induced by newly introduced BTV serotypes.
蓝舌病是由蓝舌病病毒(BTV)引起的家畜(主要是羊和牛)的一种主要传染病。BTV通过叮咬的蠓从受感染的动物传播到未受感染的动物。从历史上看,蓝舌病几乎只在世界上的温带和热带地区被描述,那里温暖的温度有利于易感昆虫媒介种群的传播,也有利于媒介内的病毒复制周期。然而,在过去的十年中,BTV在南欧广泛传播,并且出乎意料地在北方欧洲(包括英国)也广泛传播,远远超出其已知的地理上限,并对动物健康和经济造成严重问题。有趣的是,全世界有24种不同的BTV“类型”(称为“血清型”)。基本上,这些不同的血清型具有形成病毒颗粒外壳的略微不同的蛋白质。从本质上讲,蓝舌病可以被认为是由24种不同病毒引起的单一疾病!这是因为如果动物接种了针对BTV血清型1的疫苗,例如(BTV-1),那么它将仅针对BTV-1的感染而不是针对其他23种BTV血清型的感染而受到保护。自1998年以来,已有9种不同血清型的13种BTV入侵欧洲。安全有效的灭活疫苗的开发对预防和限制BTV流行产生了巨大的有益影响。然而,任何新血清型的显著侵入都迫使选择相关的新病毒用于疫苗生产。由于BTV是通过昆虫媒介传播的,因此它具有季节性模式。大多数蓝舌病疫情在传入后的第一个病媒季节传播有限,但在第二年将大幅传播并造成广泛损害。因此,疫苗生产的时间轴对于阻止新引入的血清型的传播是绝对关键的。目前,疫苗生产商从田间获得新的BTV毒株大约需要1至6个月,另外需要14至20个月来开发、测试和生产新疫苗。快速生产疫苗将确保遏制蓝舌病。例如,据估计,英国BTV-8疫情的控制为英国经济节省了4.85亿英镑和10,000个工作岗位。这一成功的疫苗接种活动使英国免于第二个BTV-8“季节”。然而,前一年没有BTV-8疫苗可以阻止该疾病在几个中欧国家的第二年爆发。该提案的总体目标是:(i)缩短将新引入的BTV血清型的适当疫苗推向市场所需的时间;(ii)收集确定(和优化)BTV疫苗制备中使用的毒株选择标准所需的数据;(iii)设计能够引发免疫应答的病毒,以保护免受多种BTV血清型的侵害。通过使用新的基因工程技术,我们将开发和表征BTV“合成”病毒,这些病毒可以作为疫苗开发的“现成”毒株。该系统有可能减少制造商从现场获得新菌株所需的时间。我们将研究这些合成病毒如何在组织培养中发挥作用,以及它们在接种疫苗的绵羊中诱导保护性免疫的能力。此外,我们将确定BTV疫苗的哪些部分在接种动物中诱导免疫应答,我们将尝试设计可用作疫苗的病毒,以保护动物免受多种血清型的侵害。该提案的完成提供了开发工具的可能性,以避免未来新引入的BTV血清型引起的大部分经济损失。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A synthetic biology approach for a vaccine platform against known and newly emerging serotypes of bluetongue virus.
  • DOI:
    10.1128/jvi.02183-14
  • 发表时间:
    2014-11
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Nunes SF;Hamers C;Ratinier M;Shaw A;Brunet S;Hudelet P;Palmarini M
  • 通讯作者:
    Palmarini M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Massimo Palmarini其他文献

Evolution of enhanced innate immune suppression by SARS-CoV-2 Omicron subvariants
SARS-CoV-2 Omicron 亚变体对增强型先天免疫抑制的进化
  • DOI:
    10.1038/s41564-023-01588-4
  • 发表时间:
    2024-01-16
  • 期刊:
  • 影响因子:
    19.400
  • 作者:
    Ann-Kathrin Reuschl;Lucy G. Thorne;Matthew V. X. Whelan;Roberta Ragazzini;Wilhelm Furnon;Vanessa M. Cowton;Giuditta De Lorenzo;Dejan Mesner;Jane L. E. Turner;Giulia Dowgier;Nathasha Bogoda;Paola Bonfanti;Massimo Palmarini;Arvind H. Patel;Clare Jolly;Greg J. Towers
  • 通讯作者:
    Greg J. Towers
Phenotypic evolution of SARS-CoV-2 spike during the COVID-19 pandemic
COVID-19 大流行期间 SARS-CoV-2 刺突蛋白的表型进化
  • DOI:
    10.1038/s41564-024-01878-5
  • 发表时间:
    2025-01-03
  • 期刊:
  • 影响因子:
    19.400
  • 作者:
    Wilhelm Furnon;Vanessa M. Cowton;Giuditta De Lorenzo;Richard Orton;Vanessa Herder;Diego Cantoni;Georgios Ilia;Diogo Correa Mendonca;Karen Kerr;Jay Allan;Nicole Upfold;Gavin R. Meehan;Siddharth Bakshi;Udeet Ranjan Das;Sergi Molina Arias;Marion McElwee;Sarah Little;Nicola Logan;Kirsty Kwok;Katherine Smollett;Brian J. Willett;Ana Da Silva Filipe;David L. Robertson;Joe Grove;Arvind H. Patel;Massimo Palmarini
  • 通讯作者:
    Massimo Palmarini
Spatially resolved single-cell atlas unveils a distinct cellular signature of fatal lung COVID-19 in a Malawian population
空间解析单细胞图谱揭示了马拉维人群中致命性肺部 COVID-19 的独特细胞特征
  • DOI:
    10.1038/s41591-024-03354-3
  • 发表时间:
    2024-11-20
  • 期刊:
  • 影响因子:
    50.000
  • 作者:
    James Nyirenda;Olympia M. Hardy;João Da Silva Filho;Vanessa Herder;Charalampos Attipa;Charles Ndovi;Memory Siwombo;Takondwa Rex Namalima;Leticia Suwedi;Georgios Ilia;Watipenge Nyasulu;Thokozile Ngulube;Deborah Nyirenda;Leonard Mvaya;Joseph Phiri;Dennis Chasweka;Chisomo Eneya;Chikondi Makwinja;Chisomo Phiri;Frank Ziwoya;Abel Tembo;Kingsley Makwangwala;Stanley Khoswe;Peter Banda;Ben Morton;Orla Hilton;Sarah Lawrence;Monique Freire dos Reis;Gisely Cardoso Melo;Marcus Vinicius Guimaraes de Lacerda;Fabio Trindade Maranhão Costa;Wuelton Marcelo Monteiro;Luiz Carlos de Lima Ferreira;Carla Johnson;Dagmara McGuinness;Kondwani Jambo;Michael Haley;Benjamin Kumwenda;Massimo Palmarini;Donna M. Denno;Wieger Voskuijl;Steve Bvuobvuo Kamiza;Kayla G. Barnes;Kevin Couper;Matthias Marti;Thomas D. Otto;Christopher A. Moxon
  • 通讯作者:
    Christopher A. Moxon
NSm is a critical determinant for bunyavirus transmission between vertebrate and mosquito hosts
NSm 是布尼亚病毒在脊椎动物和蚊子宿主之间传播的关键决定因素
  • DOI:
    10.1038/s41467-024-54809-7
  • 发表时间:
    2025-01-31
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Selim Terhzaz;David Kerrigan;Floriane Almire;Agnieszka M. Szemiel;Joseph Hughes;Jean-Philippe Parvy;Massimo Palmarini;Alain Kohl;Xiaohong Shi;Emilie Pondeville
  • 通讯作者:
    Emilie Pondeville
Omics Analyses Uncover Host Networks Defining Virus-Permissive and -Hostile Cellular States
组学分析揭示了决定病毒允许性和敌对性细胞状态的宿主网络
  • DOI:
    10.1016/j.mcpro.2025.100966
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    5.500
  • 作者:
    Honglin Chen;Philip D. Charles;Quan Gu;Sabrina Liberatori;David L. Robertson;Massimo Palmarini;Sam J. Wilson;Shabaz Mohammed;Alfredo Castello
  • 通讯作者:
    Alfredo Castello

Massimo Palmarini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Massimo Palmarini', 18)}}的其他基金

Virus cross-species transmission. Defining the immunological barriers to viral emergence
病毒跨物种传播。
  • 批准号:
    MC_UU_00034/3
  • 财政年份:
    2023
  • 资助金额:
    $ 51.32万
  • 项目类别:
    Intramural
GeoMx digital spatial profiler: expanding the capabilities of the CVR Virus Genomics and Bioinformatics platform
GeoMx 数字空间分析仪:扩展 CVR 病毒基因组学和生物信息学平台的功能
  • 批准号:
    MR/X01360X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 51.32万
  • 项目类别:
    Research Grant
Monkeypox Rapid Research Response
猴痘快速研究反应
  • 批准号:
    BB/X011607/1
  • 财政年份:
    2022
  • 资助金额:
    $ 51.32万
  • 项目类别:
    Research Grant
CVR Reagent Repository
CVR 试剂库
  • 批准号:
    MC_PC_20035
  • 财政年份:
    2021
  • 资助金额:
    $ 51.32万
  • 项目类别:
    Intramural
MRC Centre for Virus Research (MRC CVR) - COVID-19
MRC 病毒研究中心 (MRC CVR) - COVID-19
  • 批准号:
    MC_PC_19026
  • 财政年份:
    2020
  • 资助金额:
    $ 51.32万
  • 项目类别:
    Intramural
Innate Immunity and Host Species Barriers
先天免疫和宿主物种障碍
  • 批准号:
    MC_UU_12014/10
  • 财政年份:
    2016
  • 资助金额:
    $ 51.32万
  • 项目类别:
    Intramural
Clinical and Veterinary Virology
临床和兽医病毒学
  • 批准号:
    MC_UU_12014/11
  • 财政年份:
    2016
  • 资助金额:
    $ 51.32万
  • 项目类别:
    Intramural
Persistent Infections
持续感染
  • 批准号:
    MC_UU_12014/3
  • 财政年份:
    2013
  • 资助金额:
    $ 51.32万
  • 项目类别:
    Intramural
Molecular and reverse genetics studies of orbivirus transmission host responses epidemiology and diagnostic systems
环状病毒传播宿主反应流行病学和诊断系统的分子和反向遗传学研究
  • 批准号:
    BB/I017224/1
  • 财政年份:
    2011
  • 资助金额:
    $ 51.32万
  • 项目类别:
    Research Grant
MRC-University of Glasgow Centre for Virus Research
MRC-格拉斯哥大学病毒研究中心
  • 批准号:
    G0801822/1
  • 财政年份:
    2010
  • 资助金额:
    $ 51.32万
  • 项目类别:
    Research Grant

相似海外基金

Adjuvant strategies for universal and multiseasonal influenza vaccine candidates in the context of pre-existing immunity
在已有免疫力的情况下通用和多季节流感候选疫苗的辅助策略
  • 批准号:
    10649041
  • 财政年份:
    2023
  • 资助金额:
    $ 51.32万
  • 项目类别:
Development of a single-dose self-amplifying RNA vaccine for boosting pre-existing influenza virus immunity, driving B and T cell responses to conserved targets
开发单剂量自扩增 RNA 疫苗,用于增强已有的流感病毒免疫力,驱动 B 和 T 细胞对保守靶点的反应
  • 批准号:
    10620283
  • 财政年份:
    2022
  • 资助金额:
    $ 51.32万
  • 项目类别:
Overcoming pre-existing immunity to AAV to enhance AAV-based HIV immunotherapies
克服预先存在的 AAV 免疫力,增强基于 AAV 的 HIV 免疫疗法
  • 批准号:
    10626436
  • 财政年份:
    2022
  • 资助金额:
    $ 51.32万
  • 项目类别:
Development of a single-dose self-amplifying RNA vaccine for boosting pre-existing influenza virus immunity, driving B and T cell responses to conserved targets
开发单剂量自扩增 RNA 疫苗,用于增强已有的流感病毒免疫力,驱动 B 和 T 细胞对保守靶点的反应
  • 批准号:
    10484741
  • 财政年份:
    2022
  • 资助金额:
    $ 51.32万
  • 项目类别:
Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
对现有 NIH 拨款和合作协议的行政补充(家长管理补充临床试验可选)
  • 批准号:
    10494563
  • 财政年份:
    2021
  • 资助金额:
    $ 51.32万
  • 项目类别:
Seasonal and universal Vaccination in aged populations with pre-existing immunity
对已有免疫力的老年人群进行季节性和普遍的疫苗接种
  • 批准号:
    10408841
  • 财政年份:
    2021
  • 资助金额:
    $ 51.32万
  • 项目类别:
Seasonal and universal Vaccination in aged populations with pre-existing immunity
对已有免疫力的老年人群进行季节性和普遍的疫苗接种
  • 批准号:
    10313001
  • 财政年份:
    2021
  • 资助金额:
    $ 51.32万
  • 项目类别:
Harnessing pre-existing immunity to enhance the immunogenicity of an adjuvant-free, immuno-targeting subunit vaccine against SARS-CoV-2
利用预先存在的免疫力来增强针对 SARS-CoV-2 的无佐剂、免疫靶向亚单位疫苗的免疫原性
  • 批准号:
    467139
  • 财政年份:
    2021
  • 资助金额:
    $ 51.32万
  • 项目类别:
    Studentship Programs
Seasonal and universal Vaccination in aged populations with pre-existing immunity
对已有免疫力的老年人群进行季节性和普遍的疫苗接种
  • 批准号:
    10613576
  • 财政年份:
    2021
  • 资助金额:
    $ 51.32万
  • 项目类别:
Animal models for SARS-CoV-2: vaccines and immune enhancement
SARS-CoV-2 动物模型:疫苗和免疫增强
  • 批准号:
    422763
  • 财政年份:
    2020
  • 资助金额:
    $ 51.32万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了