NUMERICAL SOLUTION OF RENAL TRANSPORT EQUATIONS

肾脏转运方程的数值解

基本信息

项目摘要

The overall long-term goal of this proposed research is to develop efficient algorithms which permit comprehensive computer simulation of renal function. It is proposed to continue the research that during the last nine years has led to very useful mathematical models of the medullary counter-flow system and the whole kidney. To make our models more comprehensive and realistic (e.g., simulate tracer washout curves and estimate membrane parameters), further improvements are required in our computer algorithms for the solution of the complicated systems of coupled, stiff, and nonlinear differential equations describing the models. It is hoped to increase the accuracy and stability of the algorithms through the use of piecewise polynomial approximations, Implicit Runge-Kutta methods, and optimum basis functions obtained from the analytic local solutions of conceptually simplified models, when transforming the model differential equations to their finite difference (or finite element) analogues. The use of parallel and multiple shooting, collocation, Rayleigh-Ritz and Galerkin, Invariant-Imbedding, Chebyshev expansion methods will be investigated. It is intended to achieve significant improvements in the efficiency of the algorithms by partitioning the equations in accordance with the physiological connectivity of the kidney, tearing the equations and variables that correspond to the solutes with minor effects on the water flow, the application of sparse matrix techniques, and the use of quasi Newton and projection methods to minimize the computer storage and run-times. It is expected that as a result of the continued successful application of the above techniques the models will progressively improve in sophistication and permit a serious attack on the problem of parameter estimation. For this purpose the use of experimental values, continuation, smoothing, minimization of energy requirements and related techniques is proposed. The methods already developed, as well as currently available experimental information about the parameters, flows, pressures, concentrations and architecture will be progressively incorporated in to our multinephron, multisolute, path following models.
这项拟议研究的总体长期目标是开发 有效的算法,允许全面的计算机模拟, 肾功能 建议继续研究, 在过去的九年里,我们已经建立了非常有用的骨髓数学模型, 逆流系统和整个肾脏。 让我们的模特 全面和现实的(例如,模拟示踪剂冲刷曲线, 估计膜参数),需要进一步改进我们的 计算机算法的解决方案的复杂系统的耦合, 刚性和非线性微分方程描述的模型。 是 希望通过提高算法的准确性和稳定性, 使用分段多项式近似,隐式Runge-Kutta方法, 和最佳基函数获得的解析局部解 概念上简化的模型,当转换模型微分时 方程到它们的有限差分(或有限元)类似物。 的 使用平行和多重拍摄,搭配,瑞利-里兹和 Galerkin,不变量嵌入,Chebyshev展开方法将是 研究了 其目的是实现重大改进, 通过根据方程划分算法的效率 与肾脏的生理连通性, 以及对应于溶质的变量,这些变量对 水流,稀疏矩阵技术的应用,以及 拟牛顿法和投影法,以尽量减少计算机存储和 运行时间。 预计,由于持续的成功, 应用上述技术,模型将逐步改进 在复杂性和允许一个严重的攻击问题的参数 估计。 为此目的,使用实验值,延续, 平滑化、能量需求最小化和相关技术, 提出了 已经开发的以及目前可用的方法 关于参数、流量、压力 集中和建筑将逐步纳入, 我们的多肾多溶质路径跟踪模型

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electrolyte, urea, and water transport in a two-nephron central core model of the renal medulla.
肾髓质双肾单位中央核心模型中电解质、尿素和水的转运。
  • DOI:
    10.1152/ajprenal.1989.257.3.f399
  • 发表时间:
    1989
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stephenson,JL;Zhang,Y;Tewarson,R
  • 通讯作者:
    Tewarson,R
Electrolyte transport in a central core model of the renal medulla.
肾髓质中央核心模型中的电解质转运。
  • DOI:
    10.1152/ajprenal.1987.253.5.f982
  • 发表时间:
    1987
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stephenson,JL;Zhang,Y;Eftekhari,A;Tewarson,R
  • 通讯作者:
    Tewarson,R
On the solution of equations for renal counterflow models.
关于肾逆流模型方程的求解。
  • DOI:
    10.1016/0010-4825(85)90012-5
  • 发表时间:
    1985
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Tewarson,RP;Stephenson,JL;Garcia,M;Zhang,Y
  • 通讯作者:
    Zhang,Y
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

REGINALD P TEWARSON其他文献

REGINALD P TEWARSON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('REGINALD P TEWARSON', 18)}}的其他基金

NUMERICAL SOLUTION OF RENAL TRANSPORT EQUATIONS
肾脏转运方程的数值解
  • 批准号:
    3225788
  • 财政年份:
    1974
  • 资助金额:
    $ 6.38万
  • 项目类别:
NUMERICAL SOLUTION OF RENAL TRANSPORT EQUATIONS
肾脏转运方程的数值解
  • 批准号:
    3225794
  • 财政年份:
    1974
  • 资助金额:
    $ 6.38万
  • 项目类别:
NUMERICAL SOLUTION OF RENAL TRANSPORT EQUATIONS
肾脏转运方程的数值解
  • 批准号:
    2137102
  • 财政年份:
    1974
  • 资助金额:
    $ 6.38万
  • 项目类别:
NUMERICAL SOLUTION OF RENAL TRANSPORT EQUATIONS
肾脏转运方程的数值解
  • 批准号:
    2137099
  • 财政年份:
    1974
  • 资助金额:
    $ 6.38万
  • 项目类别:
NUMERICAL SOLUTION OF RENAL TRANSPORT EQUATIONS
肾脏转运方程的数值解
  • 批准号:
    3225789
  • 财政年份:
    1974
  • 资助金额:
    $ 6.38万
  • 项目类别:
NUMERICAL SOLUTION OF RENAL TRANSPORT EQUATIONS
肾脏转运方程的数值解
  • 批准号:
    3225792
  • 财政年份:
    1974
  • 资助金额:
    $ 6.38万
  • 项目类别:
NUMERICAL SOLUTION OF RENAL TRANSPORT EQUATIONS
肾脏转运方程的数值解
  • 批准号:
    2137100
  • 财政年份:
    1974
  • 资助金额:
    $ 6.38万
  • 项目类别:
NUMERICAL SOLUTION OF RENAL TRANSPORT EQUATIONS
肾脏转运方程的数值解
  • 批准号:
    650759
  • 财政年份:
    1974
  • 资助金额:
    $ 6.38万
  • 项目类别:
NUMERICAL SOLUTION OF RENAL TRANSPORT EQUATIONS
肾脏转运方程的数值解
  • 批准号:
    3225791
  • 财政年份:
    1974
  • 资助金额:
    $ 6.38万
  • 项目类别:
NUMERICAL SOLUTION OF RENAL TRANSPORT EQUATIONS
肾脏转运方程的数值解
  • 批准号:
    3225793
  • 财政年份:
    1974
  • 资助金额:
    $ 6.38万
  • 项目类别:

相似海外基金

Calculation and the Verification of the maximum electric power of Microbial Fuel Cells by Minimizing the Internal Resistance Using the Mathematical Model
微生物燃料电池内阻最小化最大电功率的数学模型计算与验证
  • 批准号:
    23K11483
  • 财政年份:
    2023
  • 资助金额:
    $ 6.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Advancement of mathematical model and visualization method for cognition of relation between micro and macro phenomena
认知微观与宏观现象关系的数学模型和可视化方法的进展
  • 批准号:
    23K11128
  • 财政年份:
    2023
  • 资助金额:
    $ 6.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction and analysis of a hybrid mathematical model describing the dynamics of bacterial cellular society
描述细菌细胞社会动态的混合数学模型的构建和分析
  • 批准号:
    23K03208
  • 财政年份:
    2023
  • 资助金额:
    $ 6.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Model-Based Optimization of CRT Response in Ischemia
基于数学模型的缺血 CRT 反应优化
  • 批准号:
    10734486
  • 财政年份:
    2023
  • 资助金额:
    $ 6.38万
  • 项目类别:
Noncontact Measurement of Multiple Sites of Multiple People Using Array Radar Signal Processing Based on Mathematical Model of Body Displacement
基于人体位移数学模型的阵列雷达信号处理非接触多人多部位测量
  • 批准号:
    23H01420
  • 财政年份:
    2023
  • 资助金额:
    $ 6.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A mathematical model of colloidal membrane vesicle formation
胶体膜囊泡形成的数学模型
  • 批准号:
    567961-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 6.38万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Mathematical model to simulate SARS-CoV-2 infection within-host
模拟宿主内 SARS-CoV-2 感染的数学模型
  • 批准号:
    EP/W007355/1
  • 财政年份:
    2022
  • 资助金额:
    $ 6.38万
  • 项目类别:
    Research Grant
Towards A Mathematical Model For Spacetimes With Multiple Histories
建立具有多重历史的时空数学模型
  • 批准号:
    577586-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 6.38万
  • 项目类别:
    University Undergraduate Student Research Awards
Mathematical model of internal standard selection criteria for accurate quantitative analysis
精确定量分析内标选择标准的数学模型
  • 批准号:
    22K10604
  • 财政年份:
    2022
  • 资助金额:
    $ 6.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical model for quantitatively analysis the pathophysiological characteristics of mouse photoreceptor cell
定量分析小鼠感光细胞病理生理特征的数学模型
  • 批准号:
    22K20514
  • 财政年份:
    2022
  • 资助金额:
    $ 6.38万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了