NUMERICAL SOLUTION OF RENAL TRANSPORT EQUATIONS
肾脏转运方程的数值解
基本信息
- 批准号:3225789
- 负责人:
- 金额:$ 8.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1974
- 资助国家:美国
- 起止时间:1974-06-30 至 1993-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(Adapted from applicant's abstract): The overall goal of this continuing
project is to develop efficient algorithms that will permit the
development of mathematical models that relate normal and pathological
renal function to the underlying membrane transport and flow processes in
the renal tubules and their associated vasculature. The primary thrust of
this research during the next period will be: To extend our present
models at the physiological level to include: (a) Additional architectural
features particularly a more detailed representation of the relation of
vascular and tubular elements. (b) A more detailed representation of the
transmural movement of water and solutes that takes into account both
cellular and paracellular pathways. (c) The addition of the solutes H+,
HCO3-, HPO4--, H2PO4-, NH4+, CO2, and certain of the organic osmolytes
found in the medulla to the Na+, K+, C1-, and urea already included in the
models. (d) The exchange of electrolytes and water between red blood
cells and plasma in the vasa recta. (e) A more detailed analysis of time
dependent behavior, in particular the transition from diuresis to
antidiuresis, and control of the excretion of Na, K, urea, and water by
ADH, ANF, and aldosterone, To vectorize the present algorithms in a way
that permits the efficient application of the parallel processing
capabilities of supercomputer facilities. (a) Improve the stability (and,
if necessary, the accuracy) of the numerical methods. (b) Develop
hierarchal solution strategies of Multigrid type. (c) Develop general
purpose algorithms that will guarantee the convergence of iterative
schemes for the solution of model equations by using continuation and
smoothing methods. (d) Develop improved methods for estimating the ranges
of the significant parameters of the kidney. MINOS - the constrained
nonlinear optimization package - will continue to be used on preliminary
studies. A complementary aim is to make the non-linear Schur Complement
type methods developed by us readily available to other biomedical
modelers, and thus, to implement a variety of models on whole kidney and
medulla. (b) Models of isolated perfused kidney. (c) Models of epithelia
and isolated perfused tubules. (d) A multi-cell model of the macula densa
of the cortical ascending limb and its role in the transmission of the
tubuloglomerular feedback response. (e) Models for verifying by
quantitative simulations hypotheses for mechanisms of neuronal function.
(摘自申请人的摘要):本文的总体目标是
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
REGINALD P TEWARSON其他文献
REGINALD P TEWARSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('REGINALD P TEWARSON', 18)}}的其他基金
相似海外基金
Calculation and the Verification of the maximum electric power of Microbial Fuel Cells by Minimizing the Internal Resistance Using the Mathematical Model
微生物燃料电池内阻最小化最大电功率的数学模型计算与验证
- 批准号:
23K11483 - 财政年份:2023
- 资助金额:
$ 8.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advancement of mathematical model and visualization method for cognition of relation between micro and macro phenomena
认知微观与宏观现象关系的数学模型和可视化方法的进展
- 批准号:
23K11128 - 财政年份:2023
- 资助金额:
$ 8.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction and analysis of a hybrid mathematical model describing the dynamics of bacterial cellular society
描述细菌细胞社会动态的混合数学模型的构建和分析
- 批准号:
23K03208 - 财政年份:2023
- 资助金额:
$ 8.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Model-Based Optimization of CRT Response in Ischemia
基于数学模型的缺血 CRT 反应优化
- 批准号:
10734486 - 财政年份:2023
- 资助金额:
$ 8.31万 - 项目类别:
Noncontact Measurement of Multiple Sites of Multiple People Using Array Radar Signal Processing Based on Mathematical Model of Body Displacement
基于人体位移数学模型的阵列雷达信号处理非接触多人多部位测量
- 批准号:
23H01420 - 财政年份:2023
- 资助金额:
$ 8.31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical model to simulate SARS-CoV-2 infection within-host
模拟宿主内 SARS-CoV-2 感染的数学模型
- 批准号:
EP/W007355/1 - 财政年份:2022
- 资助金额:
$ 8.31万 - 项目类别:
Research Grant
A mathematical model of colloidal membrane vesicle formation
胶体膜囊泡形成的数学模型
- 批准号:
567961-2022 - 财政年份:2022
- 资助金额:
$ 8.31万 - 项目类别:
Postgraduate Scholarships - Doctoral
Towards A Mathematical Model For Spacetimes With Multiple Histories
建立具有多重历史的时空数学模型
- 批准号:
577586-2022 - 财政年份:2022
- 资助金额:
$ 8.31万 - 项目类别:
University Undergraduate Student Research Awards
Mathematical model for quantitatively analysis the pathophysiological characteristics of mouse photoreceptor cell
定量分析小鼠感光细胞病理生理特征的数学模型
- 批准号:
22K20514 - 财政年份:2022
- 资助金额:
$ 8.31万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Mathematical model of internal standard selection criteria for accurate quantitative analysis
精确定量分析内标选择标准的数学模型
- 批准号:
22K10604 - 财政年份:2022
- 资助金额:
$ 8.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)