GASCHEM: Optimising industrial gas fermentation for commercial low-carbon fuel & chemical production through systems and synthetic biology approaches
GASCHEM:优化商业低碳燃料的工业气体发酵
基本信息
- 批准号:BB/K00283X/1
- 负责人:
- 金额:$ 305.32万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Global Energy demand is expected to increase by up to 40% by 2030. The key challenge facing the global community is to not only increase the sources of energy supply, but to also maximize the use of sustainable forms of energy to safeguard the environment while ensuring that the latter do not detrimentally impact food supplies. In this regard, renewable sources of energy will play an increasing role in the global primary energy supply. The UK government, along with the majority of the civilised world, have now set challenging targets for reductions in greenhouse gas (GHG). Centre stage is the need for the sustainable production of hydrocarbons for energy, lubricants, and high value chemicals. Traditional routes to chemical generation through biological systems have been reliant on the conversion of the more tractable components of plant biomass (sugars and starch) into chemicals, and in particular biofuels. The microbes employed ferment the easily accessible sugar and/or starch of plants, such as sugar cane or corn, and convert them into biofuels, most commonly ethanol. This has led to concerns over competition with use of these products as food, and a re-focussing of efforts on so-called 'second generation' biofuels. These are generated from cell wall material (lignocellulose) derived from non-food crops or agricultural wastes, such as willow and straw, respectively. Cell wall material is a product of photosynthesis, whereby plants convert atmospheric carbon dioxide gas (CO2) into sugars which are then used to assemble the complex carbon-based polymer, lignocellulose. For the fermentative growth of microbes on plant cell walls, lignocellulose must first be converted back into simple sugars. However, lignocellulose is extremely resistant to breakdown. Overcoming this recalcitrance in a cost effective manner is proving extremely challenging. An alternative route would be to directly capture carbon, by harnessing the ability of certain bacteria, typified by Clostridium ljungdahli, to 'eat' the gas carbon monoxide (CO). When CO is injected into the liquid medium of fermentation vessels it is consumed by Clostridium ljungdahlii and converted into ethanol. Fortunately, CO is an abundant resource, and a waste product of industries such as steel manufacturing, oil refining and chemical production. Moreover, it can be readily generated in the form of Synthesis Gas ('Syngas'), by the gasification (heating) of forestry and agricultural residues, municipal waste and coal. By allowing the use of all these available low cost, non-food resources, such a process both overcomes the "Food versus Fuel" issues associated with traditional ethanol production, and circumvents many of the challenges associated with 'second generation' biofuels. Furthermore, capturing the large volume of CO (destined to become CO2 once released into the atmosphere) emitted by industry for fuel and chemical production provides a net reduction in fossil carbon emissions. The Industrial Partner in this project, LanzaTech, have developed a versatile and robust process based on such a 'gas-eating' bacterium, and demonstrated its ability to produce chemicals from the off-gas of a Steel plant. Current products include ethanol, and another alcohol (butanediol) which, unlike ethanol, has potential as a valuable chemical, solvent or polymer. The University of Nottingham has developed world-leading genetic tools which can be used to both enhance the productivity of the current process, and extend the number of products the organism can make. Working together, the Nottingham tools will be used to improve our understanding of how LanzaTech's 'gas-eating' bugs convert carbon monoxide into chemicals. Thereafter, this knowledge will be exploited to both increase the yields of existing products, and extend the range of useful chemicals that can be made.
到2030年,全球能源需求预计将增长40%。国际社会面临的主要挑战不仅是增加能源供应的来源,而且还要最大限度地利用可持续形式的能源,以保护环境,同时确保后者不会对粮食供应产生不利影响。在这方面,可再生能源将在全球初级能源供应中发挥越来越大的作用。英国政府,以及大多数文明世界,现在已经为减少温室气体(GHG)设定了具有挑战性的目标。核心问题是需要可持续生产用于能源、润滑剂和高价值化学品的碳氢化合物。通过生物系统产生化学物质的传统途径依赖于将植物生物量中更容易处理的成分(糖和淀粉)转化为化学物质,特别是生物燃料。这些微生物利用甘蔗或玉米等植物中容易获得的糖和/或淀粉进行发酵,并将其转化为生物燃料,最常见的是乙醇。这引起了人们对使用这些产品作为食物的竞争的担忧,以及对所谓的“第二代”生物燃料的重新关注。它们分别由来自非粮食作物或农业废物(如柳树和稻草)的细胞壁材料(木质纤维素)产生。细胞壁材料是光合作用的产物,植物将大气中的二氧化碳气体(CO2)转化为糖,然后用于组装复杂的碳基聚合物木质纤维素。为了使微生物在植物细胞壁上发酵生长,木质纤维素必须首先转化回单糖。然而,木质纤维素具有极强的抗分解能力。事实证明,以具有成本效益的方式克服这种顽固性是极具挑战性的。另一种方法是直接捕获碳,通过利用某些细菌的能力,以永达梭菌为代表,“吃掉”气体一氧化碳(CO)。当CO注入到发酵容器的液体培养基中时,它被隆达氏梭菌消耗并转化为乙醇。幸运的是,一氧化碳是一种丰富的资源,也是钢铁制造、炼油和化工生产等行业的废物。此外,它可以很容易地以合成气(Syngas)的形式产生,通过气化(加热)林业和农业残留物,城市废物和煤炭。通过允许使用所有这些可用的低成本非粮食资源,这种过程既克服了与传统乙醇生产相关的“食物与燃料”问题,又规避了与“第二代”生物燃料相关的许多挑战。此外,捕获燃料和化学生产工业排放的大量CO(一旦释放到大气中就注定要变成CO2)提供了化石碳排放的净减少。该项目的工业合作伙伴LanzaTech开发了一种基于这种“食气”细菌的通用且强大的工艺,并证明了其从钢铁厂的废气中生产化学物质的能力。目前的产品包括乙醇和另一种醇(丁二醇),与乙醇不同,丁二醇有潜力成为一种有价值的化学品、溶剂或聚合物。诺丁汉大学已经开发出世界领先的基因工具,可以用来提高当前过程的生产力,并扩大生物体可以生产的产品数量。通过合作,诺丁汉的工具将被用来提高我们对LanzaTech的“食气”细菌如何将一氧化碳转化为化学物质的理解。此后,这些知识将被用于提高现有产品的产量,并扩大可制造的有用化学品的范围。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gsmodutils: A python based framework for test-driven genome scale metabolic model development
Gsmodutils:基于 Python 的框架,用于测试驱动的基因组规模代谢模型开发
- DOI:10.1101/430116
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Gilbert J
- 通讯作者:Gilbert J
Whole genome sequence and manual annotation of Clostridium autoethanogenum, an industrially relevant bacterium.
- DOI:10.1186/s12864-015-2287-5
- 发表时间:2015-12-21
- 期刊:
- 影响因子:4.4
- 作者:Humphreys CM;McLean S;Schatschneider S;Millat T;Henstra AM;Annan FJ;Breitkopf R;Pander B;Piatek P;Rowe P;Wichlacz AT;Woods C;Norman R;Blom J;Goesman A;Hodgman C;Barrett D;Thomas NR;Winzer K;Minton NP
- 通讯作者:Minton NP
Additional file 2: of Whole genome sequence and manual annotation of Clostridium autoethanogenum, an industrially relevant bacterium
附加文件 2:工业相关细菌 Clostridium autoethanogenum 的全基因组序列和手动注释
- DOI:10.6084/m9.figshare.c.3624212_d1
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Humphreys C
- 通讯作者:Humphreys C
Additional file 5: of Whole genome sequence and manual annotation of Clostridium autoethanogenum, an industrially relevant bacterium
附加文件 5:工业相关细菌 Clostridium autoethanogenum 的全基因组序列和手动注释
- DOI:10.6084/m9.figshare.c.3624212_d4
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Humphreys C
- 通讯作者:Humphreys C
Additional file 1: of Whole genome sequence and manual annotation of Clostridium autoethanogenum, an industrially relevant bacterium
附加文件 1:工业相关细菌 Clostridium autoethanogenum 的全基因组序列和手动注释
- DOI:10.6084/m9.figshare.c.3624212_d5
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Humphreys C
- 通讯作者:Humphreys C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nigel Minton其他文献
Nigel Minton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nigel Minton', 18)}}的其他基金
MEDIEVAL BLUE GENES: Reducing Industrial Indigo Dye Pollution of the Environment
中世纪蓝色基因:减少工业靛蓝染料对环境的污染
- 批准号:
BB/X01150X/1 - 财政年份:2023
- 资助金额:
$ 305.32万 - 项目类别:
Research Grant
CANADA: NO LOST CARBON - the transition to Net Zero
加拿大:碳没有流失——向净零过渡
- 批准号:
BB/W018721/1 - 财政年份:2022
- 资助金额:
$ 305.32万 - 项目类别:
Research Grant
21EBTA: NO CARBON LOST - ELIMINATING CO2 PRODUCTION FROM FERMENTATION PROCESSES
21EBTA:无碳损失 - 消除发酵过程中二氧化碳的产生
- 批准号:
BB/W01453X/1 - 财政年份:2022
- 资助金额:
$ 305.32万 - 项目类别:
Research Grant
ABSCICS: Applied Bacterial Spore Control in Industrial and Clinical Settings
ABSCICS:工业和临床环境中应用的细菌孢子控制
- 批准号:
BB/T01718X/1 - 财政年份:2020
- 资助金额:
$ 305.32万 - 项目类别:
Research Grant
19-ERACoBioTech: Sustainable Production of n-Butanol by Artificial Consortia Through Synthetic and Systems Biology Approaches (SynConsor4Butonal)
19-ERACoBioTech:人工联合体通过合成和系统生物学方法可持续生产正丁醇 (SynConsor4Butonal)
- 批准号:
BB/T010630/1 - 财政年份:2020
- 资助金额:
$ 305.32万 - 项目类别:
Research Grant
CARBON RECYCLING: CONVERTING WASTE DERIVED GHG INTO CHEMICALS, FUELS AND ANIMAL FEED (CCnet).
碳回收:将温室气体产生的废物转化为化学品、燃料和动物饲料 (CCnet)。
- 批准号:
BB/S009833/1 - 财政年份:2019
- 资助金额:
$ 305.32万 - 项目类别:
Research Grant
17-ERACoBioTech: Sustainable production of added value chemicals from SynGas-derived methanol through Systems and Synthetic Biology approaches
17-ERACoBioTech:通过系统和合成生物学方法,从合成气衍生的甲醇中可持续生产增值化学品
- 批准号:
BB/R021503/1 - 财政年份:2018
- 资助金额:
$ 305.32万 - 项目类别:
Research Grant
The construction of a robust genome scale model of Eubacterium limosum
柠檬真杆菌稳健基因组规模模型的构建
- 批准号:
BB/R013241/1 - 财政年份:2017
- 资助金额:
$ 305.32万 - 项目类别:
Research Grant
MaxBio - Maximizing Conversion Yields in Biorefining
MaxBio - 最大限度地提高生物精炼的转化率
- 批准号:
BB/N022718/1 - 财政年份:2016
- 资助金额:
$ 305.32万 - 项目类别:
Research Grant
Accelerating Synthetic Biology Approaches to Renewable Chemicals and Fuels
加速可再生化学品和燃料的合成生物学方法
- 批准号:
BB/M027740/1 - 财政年份:2015
- 资助金额:
$ 305.32万 - 项目类别:
Research Grant
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 305.32万 - 项目类别:
Collaborative R&D
Optimising Nature's pharmacies: plant chemicals and pollinator health at the landscape scale
优化大自然的药房:景观尺度上的植物化学物质和传粉媒介健康
- 批准号:
NE/Y000285/1 - 财政年份:2024
- 资助金额:
$ 305.32万 - 项目类别:
Research Grant
Optimising deployment of sterile insect technique to control spotted wing drosophila in blackberries: Black-Spot
优化部署昆虫不育技术来控制黑莓中的斑翅果蝇:Black-Spot
- 批准号:
10097749 - 财政年份:2024
- 资助金额:
$ 305.32万 - 项目类别:
Collaborative R&D
Optimising Data Integration for Sustainable Deployment of Zero Emission Vehicles in UK
优化数据集成以实现英国零排放车辆的可持续部署
- 批准号:
10114156 - 财政年份:2024
- 资助金额:
$ 305.32万 - 项目类别:
SME Support
Optimising disease surveillance to support decision-making
优化疾病监测以支持决策
- 批准号:
DP240102286 - 财政年份:2024
- 资助金额:
$ 305.32万 - 项目类别:
Discovery Projects
Meatier meat-analogues through elucidating and optimising water entrainment in mycoprotein-based products
通过阐明和优化基于菌蛋白的产品中的水夹带,获得更肉质的类似肉
- 批准号:
2905301 - 财政年份:2024
- 资助金额:
$ 305.32万 - 项目类别:
Studentship
Virtual Mouse and Human Twins for optimising Treatments for Osteoporosis
虚拟小鼠和人类双胞胎用于优化骨质疏松症的治疗
- 批准号:
EP/Z000203/1 - 财政年份:2024
- 资助金额:
$ 305.32万 - 项目类别:
Research Grant
Optimising Genetics by Management (GxM) Interactions to Enhance Productivity and Quality in Indoor Lettuce Cultivation
通过管理 (GxM) 相互作用优化遗传学,提高室内生菜种植的生产力和质量
- 批准号:
BB/Z514731/1 - 财政年份:2024
- 资助金额:
$ 305.32万 - 项目类别:
Research Grant
Optimising CNC Machine Tool Coolant Fluid condition to prolong usage and efficiency of an expensive essential resource thereby reducing cost, improving production quality and protecting operators using a unique and innovative Coolant Monitoring Analyser
使用独特和创新的冷却液监测分析仪优化数控机床冷却液条件,延长昂贵的重要资源的使用时间和效率,从而降低成本、提高生产质量并保护操作员
- 批准号:
10075142 - 财政年份:2023
- 资助金额:
$ 305.32万 - 项目类别:
Grant for R&D
Optimising Air Transport Route & Demand Planning Using AI Powered Data Analysis
优化航空运输路线
- 批准号:
10079293 - 财政年份:2023
- 资助金额:
$ 305.32万 - 项目类别:
Collaborative R&D