Engineering wheat for take-all resistance
工程小麦以抵抗通吃
基本信息
- 批准号:BB/K005952/1
- 负责人:
- 金额:$ 102.72万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Wheat is one of the most important food items for humans and animals around the world. In the UK, wheat is sown on over 1.8 million hectares with a production value of ~£1.7 billion. Although significant increases in yield have been achieved during the last half century, the current and future demands for wheat and other cereals will require accelerated increases in productivity. This emerges as a grand challenge for society as we seek to produce enough food for a growing global population (with changing dietary preferences) in a sustainable manner. Take-all disease, caused by the soil fungus Gaeumannomyces graminis var. tritici (Ggt), is the most damaging root disease of wheat worldwide. The introduction of genes for take-all resistance into cultivated wheat has been identified as a top priority by the UK plant breeding industry and by HGCA on behalf of arable farmers (see accompanying letters from a consortium of UK plant breeders and from HGCA). At least half of UK wheat crops are affected by the disease, with average yield losses of 5-20% and complete failure under severe take-all conditions. Conservative estimates of the cost of take-all associated yield losses in the UK range from £85 m to £340 m per annum. Disease severity increases with successive wheat cropping, therefore growth of second and third wheat crops in the same fields can become commercially unviable. This problem will be exacerbated as the need for food production increases and cropping systems becomes even more intensive. Thus take-all disease represents a major threat to UK and world food security and there is an urgent need for simple, economic and sustainable strategies for disease control. Current control methods rely on crop rotation, biological control and fungicides, none of which are effective in preventing the yield losses indicated above. The most effective way to achieve simple, economic and sustainable control of take-all disease is through genetic resistance. Resistance to take-all would represent a step-change in wheat productivity, ensuring food security and enhanced industry competitiveness. It would also expand the ability to grow wheat in successive cropping seasons and increase its geographic distribution, and reduce chemical and fertiliser inputs. Unfortunately, there is no known major varietal resistance to take-all in cultivated wheat lines and hence the disease has so far proved to be intractable to breeders. In contrast, oats have extreme resistance to take-all and produce an antimicrobial triterpene glycoside (avenacin A-1) that provides protection against the disease. Wheat and other cereals do not make avenacin A-1 or appear to make other triterpene glycosides. We have cloned and characterised most of the genes for avenacin synthesis from oat. These genes are currently the only characterized source of genetic resistance to take-all from any cereal or grass species. Oat is too far removed from wheat to allow introduction of the genes for avenacin synthesis through conventional crossing or alien introgression, making genetic transformation the only viable option for introduction of these genes into wheat. The aim of this proposal is to engineer wheat to produce a suite of protective triterpenes that confer resistance to take-all disease. To do this we have assembled a customised toolkit for triterpene metabolic engineering using characterised genes and enzymes from oat and from dicot plant species.
小麦是世界上人类和动物最重要的食物之一。在英国,小麦播种面积超过180万公顷,产值约17亿GB。尽管在过去的半个世纪中实现了显著的增产,但目前和未来对小麦和其他谷物的需求将需要加速提高生产率。随着我们寻求以可持续的方式为不断增长的全球人口(随着饮食偏好的变化)生产足够的食物,这对社会来说是一个巨大的挑战。全食性病害,由土壤真菌--禾谷盖曼氏变种引起。小麦根腐病(Tritici,GGT)是世界范围内危害最大的小麦根部病害。将抗全蚀病基因引入栽培小麦已被英国植物育种行业和代表可耕种农民的HGCA确定为首要任务(见英国植物育种者联盟和HGCA的随附信件)。英国至少有一半的小麦作物受到该病的影响,平均产量损失5%-20%,在严重的全食条件下完全失败。保守估计,英国每年与产量损失相关的成本在8500万英磅到3.40亿英磅之间。小麦连作加重了病害的严重性,因此,在同一块土地上种植第二和第三种小麦作物在商业上可能变得不可行。随着对粮食生产的需求增加和种植制度变得更加密集,这一问题将会加剧。因此,全食性疾病是对英国和世界粮食安全的重大威胁,迫切需要一种简单、经济和可持续的疾病控制战略。目前的控制方法依赖于轮作、生物防治和杀菌剂,但这些方法都不能有效防止上述产量损失。实现对全食性疾病的简单、经济和可持续控制的最有效方法是通过基因抗性。抵制通吃将代表着小麦生产率的阶段性变化,从而确保粮食安全和增强行业竞争力。它还将扩大在连续作物季节种植小麦的能力,增加小麦的地理分布,并减少化学和化肥投入。不幸的是,在栽培小麦品系中还没有已知的主要品种对全蚀病的抗性,因此到目前为止,这种疾病对育种者来说是难以治愈的。相比之下,燕麦对全食有极强的抵抗力,并产生一种抗菌三萜糖苷(燕麦抗菌素A-1),提供对疾病的保护。小麦和其他谷物不会产生燕麦素A-1,也不会产生其他三萜糖苷。我们已经克隆并鉴定了燕麦中合成燕麦素的大部分基因。目前,这些基因是对任何谷类或牧草物种的全食抗性的唯一特征基因来源。燕麦与小麦的距离太远,不允许通过常规杂交或异源导入来导入合成燕麦素的基因,这使得遗传转化成为将这些基因导入小麦的唯一可行的选择。这项提议的目的是改造小麦,使其产生一套保护性的三萜类化合物,使其对全蚀病具有抗性。为此,我们利用燕麦和双子叶植物特有的基因和酶,组装了一个用于三萜类代谢工程的定制工具包。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Subtelomeric assembly of a multi-gene pathway for antimicrobial defense compounds in cereals.
- DOI:10.1038/s41467-021-22920-8
- 发表时间:2021-05-07
- 期刊:
- 影响因子:16.6
- 作者:Li Y;Leveau A;Zhao Q;Feng Q;Lu H;Miao J;Xue Z;Martin AC;Wegel E;Wang J;Orme A;Rey MD;Karafiátová M;Vrána J;Steuernagel B;Joynson R;Owen C;Reed J;Louveau T;Stephenson MJ;Zhang L;Huang X;Huang T;Fan D;Zhou C;Tian Q;Li W;Lu Y;Chen J;Zhao Y;Lu Y;Zhu C;Liu Z;Polturak G;Casson R;Hill L;Moore G;Melton R;Hall N;Wulff BBH;Doležel J;Langdon T;Han B;Osbourn A
- 通讯作者:Osbourn A
Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives.
- DOI:10.3109/10409238.2014.953628
- 发表时间:2014-11
- 期刊:
- 影响因子:6.5
- 作者:Moses T;Papadopoulou KK;Osbourn A
- 通讯作者:Osbourn A
Key applications of plant metabolic engineering.
- DOI:10.1371/journal.pbio.1001879
- 发表时间:2014-06
- 期刊:
- 影响因子:9.8
- 作者:Lau W;Fischbach MA;Osbourn A;Sattely ES
- 通讯作者:Sattely ES
Minimum Information about a Biosynthetic Gene cluster.
- DOI:10.1038/nchembio.1890
- 发表时间:2015-09
- 期刊:
- 影响因子:14.8
- 作者:Medema MH;Kottmann R;Yilmaz P;Cummings M;Biggins JB;Blin K;de Bruijn I;Chooi YH;Claesen J;Coates RC;Cruz-Morales P;Duddela S;Düsterhus S;Edwards DJ;Fewer DP;Garg N;Geiger C;Gomez-Escribano JP;Greule A;Hadjithomas M;Haines AS;Helfrich EJ;Hillwig ML;Ishida K;Jones AC;Jones CS;Jungmann K;Kegler C;Kim HU;Kötter P;Krug D;Masschelein J;Melnik AV;Mantovani SM;Monroe EA;Moore M;Moss N;Nützmann HW;Pan G;Pati A;Petras D;Reen FJ;Rosconi F;Rui Z;Tian Z;Tobias NJ;Tsunematsu Y;Wiemann P;Wyckoff E;Yan X;Yim G;Yu F;Xie Y;Aigle B;Apel AK;Balibar CJ;Balskus EP;Barona-Gómez F;Bechthold A;Bode HB;Borriss R;Brady SF;Brakhage AA;Caffrey P;Cheng YQ;Clardy J;Cox RJ;De Mot R;Donadio S;Donia MS;van der Donk WA;Dorrestein PC;Doyle S;Driessen AJ;Ehling-Schulz M;Entian KD;Fischbach MA;Gerwick L;Gerwick WH;Gross H;Gust B;Hertweck C;Höfte M;Jensen SE;Ju J;Katz L;Kaysser L;Klassen JL;Keller NP;Kormanec J;Kuipers OP;Kuzuyama T;Kyrpides NC;Kwon HJ;Lautru S;Lavigne R;Lee CY;Linquan B;Liu X;Liu W;Luzhetskyy A;Mahmud T;Mast Y;Méndez C;Metsä-Ketelä M;Micklefield J;Mitchell DA;Moore BS;Moreira LM;Müller R;Neilan BA;Nett M;Nielsen J;O'Gara F;Oikawa H;Osbourn A;Osburne MS;Ostash B;Payne SM;Pernodet JL;Petricek M;Piel J;Ploux O;Raaijmakers JM;Salas JA;Schmitt EK;Scott B;Seipke RF;Shen B;Sherman DH;Sivonen K;Smanski MJ;Sosio M;Stegmann E;Süssmuth RD;Tahlan K;Thomas CM;Tang Y;Truman AW;Viaud M;Walton JD;Walsh CT;Weber T;van Wezel GP;Wilkinson B;Willey JM;Wohlleben W;Wright GD;Ziemert N;Zhang C;Zotchev SB;Breitling R;Takano E;Glöckner FO
- 通讯作者:Glöckner FO
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anne Osbourn其他文献
サポニン生合成に関与するイネCYP51 sterol demethylase 遺伝子の分子解析
水稻CYP51甾醇脱甲基酶基因参与皂苷生物合成的分子分析
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
稲垣善茂;豊田和弘;白石友紀;一瀬勇規;Anne Osbourn - 通讯作者:
Anne Osbourn
Identification of oxidosqualene cyclases associated with saponin biosynthesis from emAstragalus membranaceus/em reveals a conserved motif important for catalytic function
来自膜荚黄芪中与皂甙生物合成相关的氧化鲨烯环化酶的鉴定揭示了一个对催化功能很重要的保守基序
- DOI:
10.1016/j.jare.2022.03.014 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:13.000
- 作者:
Kuan Chen;Meng Zhang;Lulu Xu;Yang Yi;Linlin Wang;Haotian Wang;Zilong Wang;Jiangtao Xing;Pi Li;Xiaohui Zhang;Xiaomeng Shi;Min Ye;Anne Osbourn;Xue Qiao - 通讯作者:
Xue Qiao
MYB Transcription Factors as Regulators of Phenylpropanoid Metabolism in Plants
- DOI:
10.1016/j.molp.2015.03.012 - 发表时间:
2015 - 期刊:
- 影响因子:27.5
- 作者:
Jingying Liu;Anne Osbourn;Pengda Ma - 通讯作者:
Pengda Ma
イネCYP51 sterol demethylase 遺伝子についての分子解析
水稻CYP51甾醇脱甲基酶基因的分子分析
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
稲垣善茂;豊田和弘;白石友紀;一瀬勇規;Anne Osbourn - 通讯作者:
Anne Osbourn
サポニン生合成に関与するイネOxidosqualene Cyclase 遺伝子の分子解析
参与皂苷生物合成的水稻氧化角鲨烯环化酶基因的分子分析
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
稲垣善茂;今岡敦子;藤田景子;荒瀬 栄;豊田和弘;白石友紀;一瀬勇規;Anne Osbourn - 通讯作者:
Anne Osbourn
Anne Osbourn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anne Osbourn', 18)}}的其他基金
EBioAct: Environmentally sustainable production of bioactive triterpenes
EBioAct:生物活性三萜的环境可持续生产
- 批准号:
BB/Y007751/1 - 财政年份:2024
- 资助金额:
$ 102.72万 - 项目类别:
Research Grant
Engineering saponin biosynthesis pathways for bio-production of novel vaccine adjuants
工程皂苷生物合成途径用于新型疫苗佐剂的生物生产
- 批准号:
BB/W017857/1 - 财政年份:2022
- 资助金额:
$ 102.72万 - 项目类别:
Research Grant
21EBTA Engineering specialised metabolism and new cellular architectures in plants
21EBTA Engineering 植物中的专业代谢和新细胞结构
- 批准号:
BB/W014173/1 - 财政年份:2022
- 资助金额:
$ 102.72万 - 项目类别:
Research Grant
Unlocking the chemical potential of plants: Predicting function from DNA sequence for complex enzyme superfamilies
释放植物的化学潜力:根据复杂酶超家族的 DNA 序列预测功能
- 批准号:
BB/V015176/1 - 财政年份:2022
- 资助金额:
$ 102.72万 - 项目类别:
Research Grant
Unlocking the chemical diversity of plant natural product pathways: Accessing the limonoids
解锁植物天然产物途径的化学多样性:获取柠檬苦素
- 批准号:
BB/T015063/1 - 财政年份:2020
- 资助金额:
$ 102.72万 - 项目类别:
Research Grant
Harnessing enzymes from plants for selective functionalisation of triterpenoid scaffolds
利用植物酶选择性功能化三萜类支架
- 批准号:
BB/S016023/1 - 财政年份:2020
- 资助金额:
$ 102.72万 - 项目类别:
Research Grant
Harnessing plant biosynthetic pathways to explore novel chemical space in a class of compounds with significant pharmaceutical potential
利用植物生物合成途径探索一类具有重大药物潜力的化合物的新化学空间
- 批准号:
BB/T01010X/1 - 财政年份:2019
- 资助金额:
$ 102.72万 - 项目类别:
Research Grant
Engineering Quillaja saponin biosynthesis pathways for bio-production of QS-21
工程皂树皂苷生物合成途径用于 QS-21 的生物生产
- 批准号:
BB/R005508/1 - 财政年份:2018
- 资助金额:
$ 102.72万 - 项目类别:
Research Grant
13TSB_SynBio A synthetic biology-based approach to engineering triterpenoid saponins and optimisation for industrial applications
13TSB_SynBio 一种基于合成生物学的三萜皂苷工程方法和工业应用优化
- 批准号:
BB/L004372/1 - 财政年份:2013
- 资助金额:
$ 102.72万 - 项目类别:
Research Grant
相似国自然基金
基于CERES-Wheat模型的冬小麦动态水分生产函数研究
- 批准号:51209176
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
龙麦19小麦品种醇溶蛋白近等基因系研究
- 批准号:30871525
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
一氧化氮自由基与小麦抗条锈反应相关的G蛋白信号转导
- 批准号:30370369
- 批准年份:2003
- 资助金额:18.0 万元
- 项目类别:面上项目
相似海外基金
Spatial Transcriptomic of Wheat Grain for ion transport (TranScripION)
小麦籽粒离子传输空间转录组学 (TranScripION)
- 批准号:
EP/Z000726/1 - 财政年份:2025
- 资助金额:
$ 102.72万 - 项目类别:
Fellowship
Epiphytic ecology and nutrition for control of a wheat pathogen
控制小麦病原体的附生生态学和营养
- 批准号:
MR/Y020103/1 - 财政年份:2024
- 资助金额:
$ 102.72万 - 项目类别:
Fellowship
SeptPROTECT: Rapid effector discovery to protect wheat from Septoria tritici blotch disease
SeptPROTECT:快速发现保护小麦免受小麦壳针孢斑枯病的效应子
- 批准号:
BB/X016552/1 - 财政年份:2024
- 资助金额:
$ 102.72万 - 项目类别:
Research Grant
ARCHCROP: Crossing Paths: Millet, Wheat and Cultural Exchanges in the Inner Asian Mountain Corridor, China
ARCHCROP:交叉路径:中国内亚山地走廊的小米、小麦和文化交流
- 批准号:
EP/Y027809/1 - 财政年份:2024
- 资助金额:
$ 102.72万 - 项目类别:
Fellowship
SeptProtect: Rapid effector discovery to protect wheat from Septoria tritici blotch disease
SeptProtect:快速发现效应子以保护小麦免受小麦斑枯病的侵害
- 批准号:
BB/X01617X/1 - 财政年份:2024
- 资助金额:
$ 102.72万 - 项目类别:
Research Grant
TRTech-PGR: Unlocking Bread Wheat Genome Diversity: Foundational Genome Sequences and Resources to Advance Breeding and Biotechnological Improvement of a Global Food Security Crop
TRTech-PGR:解锁面包小麦基因组多样性:促进全球粮食安全作物育种和生物技术改进的基础基因组序列和资源
- 批准号:
2322957 - 财政年份:2024
- 资助金额:
$ 102.72万 - 项目类别:
Standard Grant
Functional Analysis of Homoeologous Genes in Hexaploid Wheat
六倍体小麦同源基因的功能分析
- 批准号:
23K13932 - 财政年份:2023
- 资助金额:
$ 102.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Assessing the effectiveness of affordable soil spectroscopic techniques for microbial diversity and abundance predictions on English wheat farms
评估经济适用的土壤光谱技术对英国小麦农场微生物多样性和丰度预测的有效性
- 批准号:
10055289 - 财政年份:2023
- 资助金额:
$ 102.72万 - 项目类别:
Collaborative R&D
Developing Net Zero Wheat Varieties
开发净零小麦品种
- 批准号:
BB/Y513726/1 - 财政年份:2023
- 资助金额:
$ 102.72万 - 项目类别:
Training Grant
BBSRC Institute Strategic Programme: Delivering Sustainable Wheat (DSW) Partner Grant
BBSRC 研究所战略计划:提供可持续小麦 (DSW) 合作伙伴赠款
- 批准号:
BB/X019667/1 - 财政年份:2023
- 资助金额:
$ 102.72万 - 项目类别:
Research Grant