Reaction-coupled dynamics in DHFR catalysis
DHFR 催化中的反应耦合动力学
基本信息
- 批准号:BB/L020394/1
- 负责人:
- 金额:$ 51.33万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Enzymes are efficient catalysts that achieve rate enhancements of up to 21 orders of magnitude relative to uncatalysed reactions. However, the precise causes of these remarkable rate enhancements are not fully understood.Hydrogen transfer reactions are of fundamental importance in all biological processes. In order to understand the effects controlling the speed of these reactions, enzyme motions must be taken into account. In particular, the influence of fast motions that actively promote the reaction is a current hot topic in mechanistic studies of enzyme catalysis. Enzymes are large molecules, but we have shown that while long-range enzyme motions play important roles in the physical steps of the catalytic cycle (i.e. binding of substrates, release of products and global conformational changes), they have no effect on the actual chemical step. Our recent results have shown that fast, localised enzyme motions do play a role in the chemical step, but that this role is not the one traditionally proposed.Now that we have a more thorough general understanding of how fast enzyme motions couple to the chemical step, we are able to focus our efforts towards a precise atomistic understanding of the motions involved. We will investigate the relationship between dynamics and enzymatic chemistry using the enzyme dihydrofolate reductase (DHFR). This enzyme is required in many essential biochemical processes including synthesis of DNA and amino acids. It is therefore a long established drug target and several inhibitors have been discovered and successfully developed as antibacterial, antimalarial and anti-tumour drugs. The increasing and inherently unavoidable problem of drug resistance together with the poor yield from screening programmes demands a rational approach to develop new inhibitors based on a thorough understanding of the mechanistic and dynamic details of the catalytic process. Based on our extensive previous research, we will approach this in the following way: - Selective isotopic labelling of the enzyme. Isotopic labelling is a powerful strategy for investigating the role of enzyme dynamics, as the dynamics are affected but other properties of the enzyme are not. We already have data for the fully labelled 'heavy' enzyme; now we seek to identify the specific portions of the enzyme involved. We can produce individual parts of the protein either labelled or unlabelled using bacterial culture methods, and chemically join the different regions together to form the full length, active enzyme. Alternatively, we can incorporate labels directly by feeding the culture with labelled amino acids or their biochemical precursors.- Measuring the effect of selective isotopic labelling on the kinetics of the chemical reaction catalysed by the enzyme. We have shown that full labelling of the enzyme has a significant effect on the kinetics. However, it is likely that only certain parts of the enzyme cause this effect. By comparing various patterns of selective labelling against the results for the fully labelled enzyme, we will pinpoint the regions directly involved.- Investigation of the effect of selective isotopic labelling on the dynamics of the enzyme. By incorporating specific labels at positions of interest, and varying the overall mass of the enzyme by random fractional labelling at other sites, we can determine the effect on the enzyme dynamics using magnetic resonance techniques. This will complement the kinetic studies and will provide a thorough investigation of the contributions of fast motions in the active enzyme complex. Overall, this project will provide detailed insight into how dynamics and catalysis are linked in enzymatic reactions. It will eventually allow us to develop a model of catalysis that can explain the enormous efficiency of Nature's catalysts and should lead to the rational design of enzyme inhibitors with applications as anti-infective and anti-cancer agents.
酶是有效的催化剂,相对于未催化的反应,其实现高达21个数量级的速率增强。然而,这些显着的速率增强的确切原因还没有完全理解。氢转移反应在所有生物过程中是至关重要的。为了理解控制这些反应速度的效应,必须考虑酶的运动。特别是,快速运动的影响,积极促进反应是当前的热点问题,在酶催化机理的研究。酶是大分子,但我们已经表明,虽然长距离酶运动在催化循环的物理步骤(即底物的结合,产物的释放和全局构象变化)中起着重要作用,但它们对实际的化学步骤没有影响。我们最近的研究结果表明,快速,本地化的酶运动确实在化学步骤中发挥作用,但这种作用是不是一个传统的建议,现在,我们有一个更全面的了解如何快速酶运动耦合到化学步骤,我们能够集中我们的努力,对所涉及的运动精确的原子理解。我们将使用二氢叶酸还原酶(DHFR)研究动力学和酶化学之间的关系。这种酶在许多基本的生物化学过程中是必需的,包括DNA和氨基酸的合成。因此,它是一个长期建立的药物靶标,并且已经发现并成功开发了几种抑制剂作为抗菌,抗疟疾和抗肿瘤药物。耐药性的增加和内在不可避免的问题,以及从筛选方案的产量差,需要一个合理的方法来开发新的抑制剂的基础上彻底了解的催化过程的机制和动态的细节。基于我们以前广泛的研究,我们将以以下方式处理:-酶的选择性同位素标记。同位素标记是研究酶动力学作用的有力策略,因为动力学受到影响,但酶的其他性质不受影响。我们已经有了完全标记的“重”酶的数据;现在我们试图确定所涉及的酶的特定部分。我们可以使用细菌培养方法生产标记或未标记的蛋白质的各个部分,并将不同区域化学连接在一起以形成全长活性酶。或者,我们可以通过用标记的氨基酸或其生化前体喂养培养物来直接掺入标记。测量选择性同位素标记对酶催化的化学反应动力学的影响。我们已经表明,完全标记的酶的动力学有显着的影响。然而,很可能只有酶的某些部分引起这种效应。通过比较选择性标记的各种模式与完全标记酶的结果,我们将查明直接涉及的区域。选择性同位素标记对酶动力学影响的研究。通过在感兴趣的位置加入特定的标签,并通过在其他位点随机分数标记来改变酶的总质量,我们可以使用磁共振技术来确定对酶动力学的影响。这将补充动力学研究,并将提供一个彻底的调查的贡献,快速运动的活性酶复合物。总的来说,这个项目将提供详细的洞察动力学和催化是如何在酶促反应中联系起来的。它最终将使我们能够开发一种催化模型,可以解释自然界催化剂的巨大效率,并应导致酶抑制剂的合理设计,作为抗感染和抗癌剂的应用。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chemoenzymatic Assembly of Isotopically Labeled Folates.
同位素标记叶酸的化学酶组装。
- DOI:10.1021/jacs.7b06358
- 发表时间:2017
- 期刊:
- 影响因子:15
- 作者:Angelastro A
- 通讯作者:Angelastro A
Isotope Substitution of Promiscuous Alcohol Dehydrogenase Reveals the Origin of Substrate Preference in the Transition State
混杂醇脱氢酶的同位素取代揭示了过渡态底物偏好的起源
- DOI:10.1002/ange.201712826
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Behiry E
- 通讯作者:Behiry E
Isotope Substitution of Promiscuous Alcohol Dehydrogenase Reveals the Origin of Substrate Preference in the Transition State.
- DOI:10.1002/anie.201712826
- 发表时间:2018-03-12
- 期刊:
- 影响因子:0
- 作者:Behiry EM;Ruiz-Pernia JJ;Luk L;Tuñón I;Moliner V;Allemann RK
- 通讯作者:Allemann RK
Loss of Hyperconjugative Effects Drives Hydride Transfer during Dihydrofolate Reductase Catalysis.
超共轭效应的丧失会在二氢叶酸还原酶催化过程中驱动氢化物转移。
- DOI:10.1021/acscatal.9b02839
- 发表时间:2019
- 期刊:
- 影响因子:12.9
- 作者:Angelastro A
- 通讯作者:Angelastro A
Cryo-kinetics Reveal Dynamic Effects on the Chemistry of Human Dihydrofolate Reductase.
- DOI:10.1002/cbic.202100017
- 发表时间:2021-07-15
- 期刊:
- 影响因子:0
- 作者:Adesina AS;Luk LYP;Allemann RK
- 通讯作者:Allemann RK
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rudolf Allemann其他文献
Rudolf Allemann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rudolf Allemann', 18)}}的其他基金
Engineering Water Capture in Terpene Synthases
萜烯合成中的工程水捕获
- 批准号:
BB/R001596/1 - 财政年份:2018
- 资助金额:
$ 51.33万 - 项目类别:
Research Grant
Development of novel semiochemicals for crop protection
开发用于作物保护的新型化学信息素
- 批准号:
BB/R019681/1 - 财政年份:2018
- 资助金额:
$ 51.33万 - 项目类别:
Research Grant
Traceless, non-invasive and spatiotemporal control of protein activity in cells
无痕、无创、时空控制细胞内蛋白质活性
- 批准号:
BB/P009980/1 - 财政年份:2017
- 资助金额:
$ 51.33万 - 项目类别:
Research Grant
Novel semiochemicals for crop protection through synthetic biology
通过合成生物学用于作物保护的新型化学信息素
- 批准号:
BB/N012526/1 - 财政年份:2016
- 资助金额:
$ 51.33万 - 项目类别:
Research Grant
Epizingiberene synthase: structure, mechanism and a template for design of bioactive chemical space underpinning insect olfaction
Epiizingiberene合酶:结构、机制和用于设计支撑昆虫嗅觉的生物活性化学空间的模板
- 批准号:
BB/M022463/1 - 财政年份:2015
- 资助金额:
$ 51.33万 - 项目类别:
Research Grant
Light-responsive building blocks for synthetic biology
合成生物学的光响应构建模块
- 批准号:
BB/M006158/1 - 财政年份:2015
- 资助金额:
$ 51.33万 - 项目类别:
Research Grant
Controlling cell death and proliferation with encodable visible light responsive proteins
用可编码的可见光响应蛋白控制细胞死亡和增殖
- 批准号:
BB/I021396/1 - 财政年份:2012
- 资助金额:
$ 51.33万 - 项目类别:
Research Grant
Protein-ligand coupled motions in DHFR catalysis
DHFR 催化中的蛋白质-配体耦合运动
- 批准号:
BB/J005266/1 - 财政年份:2012
- 资助金额:
$ 51.33万 - 项目类别:
Research Grant
Design of bioactive sesquiterpene-based chemical signals with enhanced stability
具有增强稳定性的生物活性倍半萜化学信号的设计
- 批准号:
BB/H01683X/1 - 财政年份:2011
- 资助金额:
$ 51.33万 - 项目类别:
Research Grant
Intracellular Biophotonic Nanoswitches
细胞内生物光子纳米开关
- 批准号:
EP/F040954/1 - 财政年份:2008
- 资助金额:
$ 51.33万 - 项目类别:
Research Grant
相似国自然基金
G蛋白偶联受体GPR110调控Lp-PLA2抑制非酒精性脂肪性肝炎的作用及机制研究
- 批准号:82370865
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
VDAC1调控MITF信号通路影响黑色素生成的分子机制
- 批准号:31900549
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
FoxM1与Wnt通路协同调控GPR4促卵巢癌增殖转移及血管生成的分子机制研究
- 批准号:81772793
- 批准年份:2017
- 资助金额:52.0 万元
- 项目类别:面上项目
热力耦合方程组的并行多尺度算法
- 批准号:11301329
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
红树对重金属的定位累积及耦合微观分析与耐受策略研究
- 批准号:30970527
- 批准年份:2009
- 资助金额:35.0 万元
- 项目类别:面上项目
Hitchin-Kobayashi对应的推广及相关几何分析问题
- 批准号:10771188
- 批准年份:2007
- 资助金额:15.0 万元
- 项目类别:面上项目
多维动态时空耦合映象分析及其应用研究
- 批准号:60571066
- 批准年份:2005
- 资助金额:21.0 万元
- 项目类别:面上项目
基于软光刻法的多层垂直耦合光波导研究
- 批准号:60577025
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:面上项目
气动/结构耦合动力学系统目标敏感性分析的快速准确计算方法及优化设计研究
- 批准号:10402036
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Direct Interrogation of Proton-Coupled Electron Transfer Reaction Dynamics and Mechanisms with Cryogenic Ion and Ultrafast Vibrational Spectroscopies
职业:用低温离子和超快振动光谱直接探究质子耦合电子转移反应动力学和机制
- 批准号:
2044927 - 财政年份:2021
- 资助金额:
$ 51.33万 - 项目类别:
Continuing Grant
The dynamics of a system of a single reaction-diffusion equation coupled with an ordinary differential equation
单反应扩散方程与常微分方程耦合的系统动力学
- 批准号:
26400156 - 财政年份:2014
- 资助金额:
$ 51.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Gel dynamics coupled with BZ reaction
凝胶动力学与 BZ 反应耦合
- 批准号:
23656023 - 财政年份:2011
- 资助金额:
$ 51.33万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Alkane Activation at Catalytic Metal Surfaces: A Coupled Experimental and Theoretical Study of Reaction Dynamics and Energy Transfer at the Gas-Surface Interface
催化金属表面的烷烃活化:气体-表面界面反应动力学和能量传递的实验与理论耦合研究
- 批准号:
1112369 - 财政年份:2011
- 资助金额:
$ 51.33万 - 项目类别:
Standard Grant
Development of Large-scale Molecular Dynamics Simulation Method for Clarifying the Molecular Flow in Nano-pore Coupled with Surface Chemical Reaction
阐明纳米孔内分子流动与表面化学反应耦合的大规模分子动力学模拟方法的发展
- 批准号:
21686018 - 财政年份:2009
- 资助金额:
$ 51.33万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
DYNAMICALLY CONTROLLED PROTEIN TUNNELING PATHS IN PHOTOSYNTH REACTION CENTERS
光合成反应中心动态控制的蛋白质隧道路径
- 批准号:
7722296 - 财政年份:2008
- 资助金额:
$ 51.33万 - 项目类别:
DYNAMICALLY CONTROLLED PROTEIN TUNNELING PATHS IN PHOTOSYNTH REACTION CENTERS
光合成反应中心动态控制的蛋白质隧道路径
- 批准号:
7601643 - 财政年份:2007
- 资助金额:
$ 51.33万 - 项目类别:
Coupled quantum-dot devices based on the reaction-diffusion dynamics
基于反应扩散动力学的耦合量子点器件
- 批准号:
16360162 - 财政年份:2004
- 资助金额:
$ 51.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Electron and Proton Transfer in Reaction Centers
反应中心的电子和质子转移
- 批准号:
7345410 - 财政年份:1989
- 资助金额:
$ 51.33万 - 项目类别:
Electron and Proton Transfer in Reaction Centers
反应中心的电子和质子转移
- 批准号:
7756622 - 财政年份:1989
- 资助金额:
$ 51.33万 - 项目类别: