The mechanical control of neuronal maturation

神经元成熟的机械控制

基本信息

  • 批准号:
    BB/N006402/1
  • 负责人:
  • 金额:
    $ 66.5万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

During the development of the nervous system, billions of neurons have to extend long processes (dendrites and axons), which grow over large distances, become electrically active, connect to the right partners and communicate with them. Through these connections neurons form highly organised networks and transmit information in form of electrical and chemical signals that govern our functions. Each of these developmental steps is critical, and any failure may have devastating consequences for the whole organism.Almost everything we know about these processes is related to the communication between neurons and their environment via molecules and electrical signals, which is what biology has focused on during the past decades. However, neurons live in a physical world and obey physical laws. When neurons grow through tissue, they not only chemically but also mechanically interact with their environment. As bicycling is easier for us along a paved road than along a sandy beach, the mechanical properties of the tissue through which neurons grow will also strongly influence, for example, how fast they can grow and develop.Importantly, the local stiffness of brain tissue varies depending on the region in the brain, and it changes during development, ageing, neurological diseases and after injuries. While brain tissue is usually extremely soft, it becomes stiffer during ageing (in men more than in women), and under pathological conditions it can change dramatically in structure and stiffness. Prominent examples are scarring after injury or stroke, and the formation of rigid plaques or tangles in diseases such as Alzheimer's. These changes in local tissue stiffness may strongly influence neuronal function. Neuronal function, which develops as neurons mature, is characterised by their capability to generate and transmit electrical signals. However, how the mechanical environment regulates the maturation of the electrical activity of neurons and their connections to other neurons (synapses) is not known.To address this important gap in our knowledge, which has important implications not only for the development of the nervous system but also for different neurological disorders, we have put together a multidisciplinary team with years of experience in neuroscience and biophysics. The proposed project involves cutting edge neurobiology, mechanobiology, electrophysiology, molecular biology, biophysics and engineering approaches, whose combination will advance the field and provide powerful tools beyond the state of the art.We will first determine which mechanical properties the environment must have to optimally promote neuronal maturation and activity, by comparing how neurons develop in mechanically different custom-built environments. We will then use a tiny leaf spring ('cantilever') to push and pull on neurons with well-controlled forces, which are as small as the forces cells usually exert on their environment, and simultaneously measure the electrical currents that flow through these neurons. These experiments will reveal how mechanical signals alter neuronal activity and maturation. Finally, we want to understand how neurons perceive and translate these mechanical stimuli. To do this, we will identify force sensors in the neurons, and investigate how their specific activation changes cellular function.The knowledge gained in this project will not only illuminate a new facet of the development of the nervous system. Mechanical signalling might also be the missing link to understanding different developmental disorders and neurological diseases. Our research, bridging the gap between the life and physical sciences, may thus ultimately lead to important changes in how we treat patients suffering of neurological disorders.
在神经系统的发育过程中,数十亿的神经元必须延伸长过程(树突和轴突),这些过程在很远的距离上生长,变得电活跃,连接到正确的伙伴并与他们交流。通过这些连接,神经元形成高度组织化的网络,并以电信号和化学信号的形式传递信息,控制我们的功能。这些发育步骤中的每一步都是至关重要的,任何失败都可能对整个生物体造成毁灭性的后果。我们所知道的几乎所有这些过程都与神经元和它们的环境之间通过分子和电信号的交流有关,这是生物学在过去几十年里所关注的。然而,神经元生活在物理世界中,遵守物理定律。当神经元在组织中生长时,它们不仅在化学上而且在机械上与环境相互作用。就像我们在铺有路面的道路上骑车比在沙滩上骑车更容易一样,神经元赖以生长的组织的机械特性也会强烈地影响它们生长和发育的速度。重要的是,脑组织的局部硬度取决于大脑的区域,它在发育、衰老、神经系统疾病和受伤后都会发生变化。虽然大脑组织通常是非常柔软的,但随着年龄的增长,它会变得更硬(男性比女性更硬),在病理条件下,它的结构和硬度会发生巨大变化。突出的例子是受伤或中风后留下的疤痕,以及在阿尔茨海默氏症等疾病中形成的刚性斑块或缠结。这些局部组织硬度的变化可能强烈影响神经元功能。神经元功能随着神经元的成熟而发展,其特点是它们具有产生和传输电信号的能力。然而,机械环境如何调节神经元电活动的成熟及其与其他神经元(突触)的连接尚不清楚。为了解决这一重要的知识缺口,这不仅对神经系统的发展,而且对不同的神经系统疾病都有重要的影响,我们组建了一个具有多年神经科学和生物物理学经验的多学科团队。该项目涉及最前沿的神经生物学、机械生物学、电生理学、分子生物学、生物物理学和工程方法,这些方法的结合将推动该领域的发展,并提供超越当前技术水平的强大工具。我们将首先通过比较神经元在机械上不同的定制环境中如何发育,确定环境必须具有哪些机械特性才能最佳地促进神经元的成熟和活动。然后,我们将使用一个微小的钢板弹簧(“悬臂”),用控制良好的力来推动和拉动神经元,这种力与细胞通常施加在其环境中的力一样小,同时测量流经这些神经元的电流。这些实验将揭示机械信号如何改变神经元的活动和成熟。最后,我们想了解神经元如何感知和翻译这些机械刺激。为此,我们将识别神经元中的力传感器,并研究它们的特定激活如何改变细胞功能。在这个项目中获得的知识不仅将阐明神经系统发展的一个新方面。机械信号也可能是理解不同发育障碍和神经系统疾病的缺失环节。我们的研究弥合了生命科学和物理科学之间的差距,可能最终导致我们治疗神经系统疾病患者的方式发生重大变化。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Regenerative capacity of neural tissue scales with changes in tissue mechanics post injury
神经组织的再生能力随损伤后组织力学的变化而变化
  • DOI:
    10.1101/2022.12.12.517822
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carnicer-Lombarte A
  • 通讯作者:
    Carnicer-Lombarte A
Late Endosomes Act as mRNA Translation Platforms and Sustain Mitochondria in Axons.
晚期内体充当 mRNA 翻译平台并维持轴突中的线粒体。
  • DOI:
    10.17863/cam.34436
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cioni J
  • 通讯作者:
    Cioni J
Late Endosomes Act as mRNA Translation Platforms and Sustain Mitochondria in Axons
  • DOI:
    10.1016/j.cell.2018.11.030
  • 发表时间:
    2019-01-10
  • 期刊:
  • 影响因子:
    64.5
  • 作者:
    Cioni, Jean-Michel;Lin, Julie Qiaojin;Holt, Christine E.
  • 通讯作者:
    Holt, Christine E.
Prevention of the foreign body response to implantable medical devices by inflammasome inhibition.
Integrating Chemistry and Mechanics: The Forces Driving Axon Growth
化学与力学的结合:驱动轴突生长的力量
  • DOI:
    10.17863/cam.52630
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Franze K
  • 通讯作者:
    Franze K
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kristian Franze其他文献

The Integration of Mechanical and Chemical Signalling in the Developing Brain
  • DOI:
    10.1016/j.bpj.2017.11.146
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Kristian Franze
  • 通讯作者:
    Kristian Franze
Brain tissue stiffness regulates neuronal development and function
  • DOI:
    10.1016/j.ibror.2019.07.029
  • 发表时间:
    2019-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kristian Franze
  • 通讯作者:
    Kristian Franze
Mechanics in the nervous system: From development to disease
神经系统中的力学:从发育到疾病
  • DOI:
    10.1016/j.neuron.2023.10.005
  • 发表时间:
    2024-02-07
  • 期刊:
  • 影响因子:
    15.000
  • 作者:
    Eva K. Pillai;Kristian Franze
  • 通讯作者:
    Kristian Franze
Measuring the Effect of Substrate Stiffness on Cell Membrane Tension Using Optical Tweezers
  • DOI:
    10.1016/j.bpj.2019.11.2264
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Jeffrey Mc Hugh;Eva Kreysing;Sarah K. Foster;Kurt Andresen;Kristian Franze;Ulrich F. Keyser
  • 通讯作者:
    Ulrich F. Keyser
Tensed axons are on fire.
紧张的轴突着火了。

Kristian Franze的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kristian Franze', 18)}}的其他基金

The role of talin and vinculin in neuronal mechanosensing
talin和vinculin在神经元机械传感中的作用
  • 批准号:
    BB/M021394/1
  • 财政年份:
    2015
  • 资助金额:
    $ 66.5万
  • 项目类别:
    Research Grant
Overcoming mechanical barriers to neuronal regeneration
克服神经元再生的机械障碍
  • 批准号:
    G1100312/1
  • 财政年份:
    2011
  • 资助金额:
    $ 66.5万
  • 项目类别:
    Fellowship

相似国自然基金

Pt/碲化物亲氧性调控助力醇类燃料电氧化的研究
  • 批准号:
    22302168
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
  • 批准号:
    LY21E080004
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:
Lagrange网络实用同步的不连续控制研究
  • 批准号:
    61603174
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
职业因素致慢性肌肉骨骼损伤模型及防控研究
  • 批准号:
    81172643
  • 批准年份:
    2011
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
呼吸中枢低氧通气反应的遗传机制及其对睡眠呼吸障碍的影响
  • 批准号:
    81070069
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
动态无线传感器网络弹性化容错组网技术与传输机制研究
  • 批准号:
    61001096
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
超临界机翼激波三维鼓包控制机理及参数优化研究
  • 批准号:
    10972233
  • 批准年份:
    2009
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
中枢钠氢交换蛋白3在睡眠呼吸暂停呼吸控制稳定性中的作用和调控机制
  • 批准号:
    30900646
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
低辐射空间环境下商用多核处理器层次化软件容错技术研究
  • 批准号:
    90818016
  • 批准年份:
    2008
  • 资助金额:
    50.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

WIRELESS MAGNETO-MECHANICAL CONTROL OF NEURAL ACTIVITY MEDIATED BY MAGNETIC NANODISCS
磁性纳米圆盘介导的神经活动的无线磁机械控制
  • 批准号:
    10644156
  • 财政年份:
    2022
  • 资助金额:
    $ 66.5万
  • 项目类别:
Neural-Epithelial Encoding of Airway Senses
气道感觉的神经上皮编码
  • 批准号:
    10490251
  • 财政年份:
    2021
  • 资助金额:
    $ 66.5万
  • 项目类别:
Sex specific immune response to SARS-CoV-2 leads to chronic neurologic symptoms
对 SARS-CoV-2 的性别特异性免疫反应导致慢性神经系统症状
  • 批准号:
    10317979
  • 财政年份:
    2021
  • 资助金额:
    $ 66.5万
  • 项目类别:
Sex specific immune response to SARS-CoV-2 leads to chronic neurologic symptoms
对 SARS-CoV-2 的性别特异性免疫反应导致慢性神经系统症状
  • 批准号:
    10669769
  • 财政年份:
    2021
  • 资助金额:
    $ 66.5万
  • 项目类别:
Neural-Epithelial Encoding of Airway Senses
气道感觉的神经上皮编码
  • 批准号:
    10589158
  • 财政年份:
    2021
  • 资助金额:
    $ 66.5万
  • 项目类别:
Complement in Paclitaxel-induced peripheral neuropathy
紫杉醇诱导的周围神经病变中的补体
  • 批准号:
    9891457
  • 财政年份:
    2020
  • 资助金额:
    $ 66.5万
  • 项目类别:
Complement in Paclitaxel-induced peripheral neuropathy
紫杉醇诱导的周围神经病变中的补体
  • 批准号:
    10597984
  • 财政年份:
    2020
  • 资助金额:
    $ 66.5万
  • 项目类别:
Developing a viral tool for bidirectional control of neuronal activity in the mouse spinal cord
开发双向控制小鼠脊髓神经元活动的病毒工具
  • 批准号:
    449484
  • 财政年份:
    2020
  • 资助金额:
    $ 66.5万
  • 项目类别:
    Studentship Programs
Complement in Paclitaxel-induced peripheral neuropathy
紫杉醇诱导的周围神经病变中的补体
  • 批准号:
    10341125
  • 财政年份:
    2020
  • 资助金额:
    $ 66.5万
  • 项目类别:
A novel approach to analyzing functional connectomics and combinatorial control in a tractable small-brain closed-loop system
一种在易处理的小脑闭环系统中分析功能连接组学和组合控制的新方法
  • 批准号:
    10058915
  • 财政年份:
    2020
  • 资助金额:
    $ 66.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了