Perception and integration of nutritional signals in plant root systems: Solving the mystery of K-Fe-P interactions.

植物根系中营养信号的感知和整合:解决 K-Fe-P 相互作用之谜。

基本信息

  • 批准号:
    BB/N018508/1
  • 负责人:
  • 金额:
    $ 62.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Mineral elements are essential to human nutrition. For example, potassium (K) is the major electrolyte in the human body and is required for kidney, muscle, nerve and heart functions. Iron (Fe) is a component of redox enzymes enabling cellular energy metabolism and of hemoglobin carrying oxygen to the brain and to the peripheral tissues. Minerals are introduced into the food chain through plants. Their root systems actively forage the soil for beneficial mineral nutrients and extract them with the help of specialized transport proteins. As for humans, mineral nutrition is essential for plant health. The importance of the root system for yield and nutritional value of food crops has been recognized, and root research has taken a center stage in food security.Plants can perceive signals about mineral nutrient availability in the soil and translate them into developmental and physiological processes that adapt root shape and transport activity, thereby maximizing foraging and uptake capacity. If we want to enhance nutrient usage efficiency of crops we need to understand the signaling pathways that mediate between soil conditions and root adaptations. The underlying mechanisms are complicated. Root systems act simultaneously as receptors perceiving nutrient availability and as effectors carrying out nutrient uptake. To achieve the best result they need to differentially regulate growth of individual root parts and transport in different cells. Without a centralized brain this involves both local and systemic signals and responses. Roots also need to integrate information on different nutrients and prioritize their responses, which requires crosstalk between individual nutrient signaling pathways.We have recently made several discoveries that should enable a better understanding of how plants process multiple nutrient signals and regulate root system architecture. We identified two different ecotypes of the model species Arabidopsis thaliana that respond differently to low K supply. The Columbia (Col-0) accession maintains growth of the primary root but halts lateral root extension, thus displaying a long, narrow root system. By contrast, Catania (Ct-1) halts main root growth but extends lateral roots thus displaying a short, bulky root system. Both accessions look very similar when K supply is sufficient. Surprisingly, we could transform the Ct-1 root phenotype into the Col-0 root phenotype by subjecting the plants to low Fe together with low K - both accessions now developed long, narrow root architectures. Fe is known to play a role in root responses of Col-0 to low P, nevertheless, both accessions showed a similar response to low P (inhibition of main root only). Clearly, the Col-0/Ct-1 pair provides us with an excellent experimental model to discover the molecular processes that underpin developmental decisions of plants under nutrient stress, and to unravel nutrient-nutrient interactions.In this project, we will combine electrophysiological methods and confocal microscopy with molecular genetics and automated root phenotyping to address the following questions: How is low-K perceived by root cells and what is the link to Fe redox metabolism? Which cellular processes underlie main root inhibition? Which signals link developmental responses of the main root with those of the lateral roots? How do different root architectures impact on nutrient uptake and on final nutrient contents in the leaves? Which genes determine root architectural responses to nutrient signals? The results from this study can be expected to lead to a detailed understanding of the fundamental biological processes and genetic components that link soil-derived nutrient signals with root development and nutrient uptake. In particular we will provide new information on the functional relationship between three essential nutrients, K, P and Fe, which will be invaluable for future efforts to improve crop performance and nutritional quality.
矿物质元素是人体营养所必需的。例如,钾(K)是人体中的主要电解质,是肾脏、肌肉、神经和心脏功能所必需的。铁(Fe)是能够使细胞能量代谢的氧化还原酶和将氧运送到大脑和外周组织的血红蛋白的组分。矿物质通过植物进入食物链。它们的根系积极地在土壤中寻找有益的矿物质营养素,并在专门的运输蛋白的帮助下提取它们。对于人类来说,矿物质营养对植物健康至关重要。根系对粮食作物产量和营养价值的重要性已得到公认,根系研究已成为粮食安全研究的中心。植物可以感知土壤中矿质营养有效性的信号,并将其转化为适应根系形状和运输活动的发育和生理过程,从而最大限度地提高觅食和吸收能力。如果我们想提高作物的养分利用效率,我们需要了解土壤条件和根系适应之间的信号通路。其内在机制是复杂的。根系同时作为感受养分有效性的受体和进行养分吸收的效应器。为了达到最佳效果,他们需要差异化地调节各个根部分的生长和在不同细胞中的运输。如果没有一个集中的大脑,这涉及到局部和系统的信号和反应。根还需要整合不同营养素的信息并优先考虑它们的反应,这需要单个营养信号通路之间的串扰。我们最近的几项发现应该能够更好地理解植物如何处理多种营养信号并调节根系结构。我们确定了两种不同的生态型的模式物种拟南芥,不同的低钾供应。哥伦比亚(Col-0)加入保持主根的生长,但停止侧根的延伸,从而显示出一个长,窄的根系。相比之下,卡塔尼亚(Ct-1)停止主根生长,但延长侧根,从而显示出短,庞大的根系。当钾供应充足时,这两种添加剂看起来非常相似。令人惊讶的是,我们可以通过使植物经受低Fe和低K来将Ct-1根表型转化为Col-0根表型-这两个品种现在都形成了长而窄的根结构。铁是已知的Col-0的根响应低P发挥作用,然而,这两个加入表现出类似的反应低P(抑制主根只)。显然,Col-0/Ct-1对为我们提供了一个极好的实验模型,可以发现营养胁迫下植物发育决策的分子过程,并解开营养-营养相互作用。在该项目中,我们将结合电生理方法和共聚焦显微镜与分子遗传学和自动化根表型分析来解决以下问题:联合收割机根细胞如何感知低钾,以及与铁氧化还原代谢的联系是什么?哪些细胞过程是主根抑制的基础?哪些信号将主根和侧根的发育反应联系起来?不同的根构型如何影响养分吸收和叶片中的最终养分含量?哪些基因决定根构型对养分信号的反应?这项研究的结果可以预期导致详细了解基本的生物过程和遗传成分,将土壤来源的养分信号与根系发育和养分吸收联系起来。特别是,我们将提供新的信息,三个必需营养素,钾,磷和铁,这将是非常宝贵的,为今后的努力,以提高作物的性能和营养品质之间的功能关系。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Environmental Regulation of PndbA600, an Auto-Inducible Promoter for Two-Stage Industrial Biotechnology in Cyanobacteria.
To respond or not to respond? Natural variation of root architectural responses to nutrient signals
  • DOI:
    10.1093/jxb/erx160
  • 发表时间:
    2017-07-17
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Amtmann A;Shahzad Z
  • 通讯作者:
    Shahzad Z
Contrasting nutrient-disease relationships: Potassium gradients in barley leaves have opposite effects on two fungal pathogens with different sensitivities to jasmonic acid.
对比营养疾病的关系:大麦叶中的钾梯度对两种对茉莉酸敏感性不同的真菌病原体的影响相反。
  • DOI:
    10.1111/pce.13350
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Davis JL;Armengaud P;Larson TR;Graham IA;White PJ;Newton AC;Amtmann A
  • 通讯作者:
    Amtmann A
Epigenetic processes in plant stress priming: Open questions and new approaches.
  • DOI:
    10.1016/j.pbi.2023.102432
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    C. Harris;A. Amtmann;J. Ton
  • 通讯作者:
    C. Harris;A. Amtmann;J. Ton
Cell-type specific transcriptional networks in root xylem adjacent cell layers
  • DOI:
    10.1101/2022.02.04.479129
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maria Amparo Asensi Fabado;E. A. Armstrong;L. Walker;Giorgio Perrella;G. Hamilton;P. Herzyk;M. Gifford;A. Amtmann
  • 通讯作者:
    Maria Amparo Asensi Fabado;E. A. Armstrong;L. Walker;Giorgio Perrella;G. Hamilton;P. Herzyk;M. Gifford;A. Amtmann
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anna Amtmann其他文献

Procédés et moyens pour augmenter la tolérance aux contraintes et la biomasse dans des plantes
增强耐受性、限制性和植物生物质的过程和方法
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anna Amtmann;M. Hannah;Veronique Gossele;Manuel Lopez;Giorgio Perrella;Christoph Verduyn
  • 通讯作者:
    Christoph Verduyn

Anna Amtmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anna Amtmann', 18)}}的其他基金

ABA transport at the nexus of nutrient deficiency and water stress in plants
ABA 转运与植物营养缺乏和水分胁迫的关系
  • 批准号:
    BB/X002721/1
  • 财政年份:
    2023
  • 资助金额:
    $ 62.84万
  • 项目类别:
    Research Grant
IRGA-Live Clamp: An integrated infrared gas-analysis platform to investigate systemic signalling within the plant canopy
IRGA-Live Clamp:用于研究植物冠层内系统信号传导的集成红外气体分析平台
  • 批准号:
    BB/W020289/1
  • 财政年份:
    2022
  • 资助金额:
    $ 62.84万
  • 项目类别:
    Research Grant
Exploring chemical 'de-priming' and quantitative genetics to improve growth and yield of soybean under abiotic stress.
探索化学“去启动”和定量遗传学,以改善非生物胁迫下大豆的生长和产量。
  • 批准号:
    BB/R019894/1
  • 财政年份:
    2018
  • 资助金额:
    $ 62.84万
  • 项目类别:
    Research Grant
The novel gene 'Histone Deacetylase Complex 1' enhances plant growth and abiotic stress tolerance; where, when and with whom?
新基因“组蛋白脱乙酰酶复合物 1”增强植物生长和非生物胁迫耐受性;
  • 批准号:
    BB/K008218/1
  • 财政年份:
    2013
  • 资助金额:
    $ 62.84万
  • 项目类别:
    Research Grant
Bio-desalination: from cell to tap
生物海水淡化:从细胞到自来水
  • 批准号:
    EP/J004871/1
  • 财政年份:
    2011
  • 资助金额:
    $ 62.84万
  • 项目类别:
    Research Grant
Inorganic ions and plant metabolism: targets signals and responses
无机离子和植物代谢:目标信号和响应
  • 批准号:
    BB/D006775/1
  • 财政年份:
    2006
  • 资助金额:
    $ 62.84万
  • 项目类别:
    Research Grant

相似海外基金

The role of the contextual food environment and community programs and policies on diet and dietary disparities in the national Healthy Communities Study
背景食物环境和社区计划以及饮食政策和饮食差异在国家健康社区研究中的作用
  • 批准号:
    10730780
  • 财政年份:
    2023
  • 资助金额:
    $ 62.84万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 62.84万
  • 项目类别:
Investigating the impact of ESBL E. coli colonization on infant microbiome
研究 ESBL 大肠杆菌定植对婴儿微生物组的影响
  • 批准号:
    10727040
  • 财政年份:
    2023
  • 资助金额:
    $ 62.84万
  • 项目类别:
Discovering resistance-resistant antimalarial drug target
发现耐药性抗疟药物靶点
  • 批准号:
    10741535
  • 财政年份:
    2023
  • 资助金额:
    $ 62.84万
  • 项目类别:
Diet and the Adolescent Brain
饮食与青少年大脑
  • 批准号:
    10705079
  • 财政年份:
    2022
  • 资助金额:
    $ 62.84万
  • 项目类别:
Health Effects of Metals in Native American Communities: A Longitudinal Multi-omics Study
金属对美洲原住民社区健康的影响:一项纵向多组学研究
  • 批准号:
    10707904
  • 财政年份:
    2022
  • 资助金额:
    $ 62.84万
  • 项目类别:
Genetic basis of diet-dependent responses across the lifespan
整个生命周期饮食依赖性反应的遗传基础
  • 批准号:
    10535264
  • 财政年份:
    2022
  • 资助金额:
    $ 62.84万
  • 项目类别:
The role of a Clostridioides difficile P-type ATPase in ferrosome formation and its impact on cellular physiology and pathogenesis
艰难梭菌 P 型 ATP 酶在铁体形成中的作用及其对细胞生理学和发病机制的影响
  • 批准号:
    10428260
  • 财政年份:
    2022
  • 资助金额:
    $ 62.84万
  • 项目类别:
Digital Assessment Core
数字评估核心
  • 批准号:
    10532294
  • 财政年份:
    2022
  • 资助金额:
    $ 62.84万
  • 项目类别:
Digital Assessment Core
数字评估核心
  • 批准号:
    10701918
  • 财政年份:
    2022
  • 资助金额:
    $ 62.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了