ABA transport at the nexus of nutrient deficiency and water stress in plants
ABA 转运与植物营养缺乏和水分胁迫的关系
基本信息
- 批准号:BB/X002721/1
- 负责人:
- 金额:$ 69.3万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Agricultural food production heavily relies on mineral fertilization. To date, the global annual use of phosphorous (P) fertilizer alone stands at 43 Mio tons. The European Commission has classified P as a 'critical raw material' and the UK is 100% reliant on import. Adding the negative impacts on environment and human health, the current rate of P use is clearly not sustainable. Developing ways to grow crops with less P input is therefore paramount for national and global food security. Due to their sedentary lifestyle, plants are risk-adverse and prepare for the worst-case scenario when they perceive environmental challenges. They have mechanisms to detect a decrease in P supply and immediately react. Up-regulation of high-affinity transport and root branching enhances soil 'mining' while down-regulation of growth and energy consumption safeguards internal resources.. If we can delay the latter and optimize the former, we have an opportunity to close the gap between apparent and potential yield. However, to put these ideas into practice through crop breeding or genome editing, we need a precise understanding of molecular signalling pathways that underpin early responses of plants to P deficiency. Considering water shortage and climate change, we also need to know whether these pathways interact with those mediating responses to osmotic stress imposed by drought or salt intrusion.We recently discovered that knockout of a gene called NPF4.2 in Arabidopsis thaliana completely abolishes early main root inhibition in low P. NPF4.2 encodes a transporter for abscisic acid (ABA) and is located on the vacuolar membrane of cells located in the central vasculature of the root. While the roots of npf4.2 mutants continue to grow in low P they can still be inhibited by other nutrient deficiencies or by salt. These findings not only highlight an entirely new role of the 'stress hormone' ABA for P-deficiency responses but also point to new role of ABA transporters for endowing the pathway with specificity. The aim of this project is to precisely map differences and convergence of the signalling pathways that inhibit root growth in response to low-P and osmotic stress and to position NPF4.2 in this network. To this end we will take advantage of the advanced tools available for A. thaliana. We will employ recently developed technology for in-vivo ABA-imaging and single-cell transcriptomics alongside reverse genetics and protein biochemistry. The proposed work programme has three parts. Work package 1 will deliver spatial maps of stress-evoked ABA signatures in roots, which will be overlaid with response patterns of related signals such as Ca2+, ROS and pH, and with spatial root transcriptomes. Work package 2 will tell us how NP4.2 shapes the signal signatures, in collaboration with other ABA-transporters and with enzymes that mobilize ABA-storage forms. This work package will also identify the relationship between NPF4.2 and previously identified components of the low-P signalling pathway such as ferroxidases and CLE peptides. The last work package will produce information on how the NPF4.2 protein is regulated. Candidate targets will be selected from the transcriptomics studies with particular emphasis on interactions with low-P induced members CIPK and CBL gene families. CBL/CIPK regulons are already known for activating membrane transporters in a Ca2+-dependent manner thereby effectuating responses nutrient and salt stress. However, a role in regulating ABA transport would be entirely novel.The expected outcomes will provide a fundamental science base for the development of 'smart' crops combining improved resource use with robustness against abiotic stress. We will identify key points in the signalling pathways that will allow us to de-couple or connect different signal inputs and response outputs. This research will therefore open offers new opportunities for precision agriculture in different environment scenarios.
农业粮食生产严重依赖矿物肥料。迄今为止,全球每年仅磷肥的使用量就达到4300万吨。欧盟委员会已将P列为“关键原材料”,英国100%依赖进口。加上对环境和人类健康的负面影响,目前的磷使用率显然是不可持续的。因此,开发种植磷投入较少的作物的方法对国家和全球粮食安全至关重要。由于它们久坐不动的生活方式,植物是危险的,当它们感知到环境挑战时,它们会为最坏的情况做准备。它们具有检测磷供应减少并立即作出反应的机制。高亲和力运输和根分枝的上调增强了土壤“采矿”,而生长和能量消耗的下调则保护了内部资源。如果我们能推迟后者,优化前者,我们就有机会缩小表观产量和潜在产量之间的差距。然而,为了通过作物育种或基因组编辑将这些想法付诸实践,我们需要精确了解支持植物对缺磷的早期反应的分子信号传导途径。考虑到水资源短缺和气候变化,我们还需要知道这些途径是否与介导干旱或盐侵入引起的渗透胁迫反应的途径相互作用。我们最近发现,敲除拟南芥中一个名为NPF4.2的基因完全消除了低磷条件下的早期主根抑制。NPF4.2编码脱落酸(阿坝)转运蛋白。并且位于位于根的中央脉管系统中的细胞的液泡膜上。虽然npf4.2突变体的根在低P下继续生长,但它们仍然可以被其他营养缺乏或盐抑制。这些发现不仅突出了一个全新的角色的“应激激素”阿坝的缺磷反应,但也指出了新的作用阿坝转运赋予途径的特异性。该项目的目的是精确地映射的差异和收敛的信号通路,抑制根生长响应低磷和渗透胁迫和定位NPF4.2在这个网络中。为此,我们将利用A. thaliana.我们将采用最近开发的技术,在体内ABA成像和单细胞转录组学以及反向遗传学和蛋白质生物化学。拟议的工作方案有三个部分。工作包1将提供根中应激诱发的脱落阿坝特征的空间地图,该地图将与Ca 2+、活性氧和pH等相关信号的响应模式以及空间根转录组重叠。工作包2将告诉我们NP4.2如何与其他ABA转运蛋白和动员ABA储存形式的酶合作,形成信号特征。该工作包还将确定NPF4.2和先前确定的低磷信号传导途径组分(如铁氧化酶和CLE肽)之间的关系。最后一个工作包将产生关于NPF4.2蛋白如何调节的信息。将从转录组学研究中选择候选靶标,特别强调与低磷诱导的CIPK和CBL基因家族成员的相互作用。已知CBL/CIPK调节子以Ca 2+依赖的方式激活膜转运蛋白,从而实现营养和盐胁迫的响应。然而,在调节阿坝运输的作用将是完全新颖的。预期的结果将提供一个基础科学基础,为'智能'作物的发展相结合,提高资源利用与鲁棒性对非生物胁迫。我们将确定信号通路中的关键点,使我们能够解耦或连接不同的信号输入和响应输出。因此,这项研究将为不同环境下的精准农业提供新的机会。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Environmental modulation of exopolysaccharide production in the cyanobacterium Synechocystis 6803.
- DOI:10.1007/s00253-023-12697-9
- 发表时间:2023-10
- 期刊:
- 影响因子:5
- 作者:Madsen, Mary Ann;Semerdzhiev, Stefan;Twigg, Jordan D.;Moss, Claire;Bavington, Charles D.;Amtmann, Anna
- 通讯作者:Amtmann, Anna
Epigenetic processes in plant stress priming: Open questions and new approaches.
- DOI:10.1016/j.pbi.2023.102432
- 发表时间:2023-07
- 期刊:
- 影响因子:9.5
- 作者:C. Harris;A. Amtmann;J. Ton
- 通讯作者:C. Harris;A. Amtmann;J. Ton
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Amtmann其他文献
Procédés et moyens pour augmenter la tolérance aux contraintes et la biomasse dans des plantes
增强耐受性、限制性和植物生物质的过程和方法
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Anna Amtmann;M. Hannah;Veronique Gossele;Manuel Lopez;Giorgio Perrella;Christoph Verduyn - 通讯作者:
Christoph Verduyn
Anna Amtmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna Amtmann', 18)}}的其他基金
IRGA-Live Clamp: An integrated infrared gas-analysis platform to investigate systemic signalling within the plant canopy
IRGA-Live Clamp:用于研究植物冠层内系统信号传导的集成红外气体分析平台
- 批准号:
BB/W020289/1 - 财政年份:2022
- 资助金额:
$ 69.3万 - 项目类别:
Research Grant
Exploring chemical 'de-priming' and quantitative genetics to improve growth and yield of soybean under abiotic stress.
探索化学“去启动”和定量遗传学,以改善非生物胁迫下大豆的生长和产量。
- 批准号:
BB/R019894/1 - 财政年份:2018
- 资助金额:
$ 69.3万 - 项目类别:
Research Grant
Perception and integration of nutritional signals in plant root systems: Solving the mystery of K-Fe-P interactions.
植物根系中营养信号的感知和整合:解决 K-Fe-P 相互作用之谜。
- 批准号:
BB/N018508/1 - 财政年份:2016
- 资助金额:
$ 69.3万 - 项目类别:
Research Grant
The novel gene 'Histone Deacetylase Complex 1' enhances plant growth and abiotic stress tolerance; where, when and with whom?
新基因“组蛋白脱乙酰酶复合物 1”增强植物生长和非生物胁迫耐受性;
- 批准号:
BB/K008218/1 - 财政年份:2013
- 资助金额:
$ 69.3万 - 项目类别:
Research Grant
Bio-desalination: from cell to tap
生物海水淡化:从细胞到自来水
- 批准号:
EP/J004871/1 - 财政年份:2011
- 资助金额:
$ 69.3万 - 项目类别:
Research Grant
Inorganic ions and plant metabolism: targets signals and responses
无机离子和植物代谢:目标信号和响应
- 批准号:
BB/D006775/1 - 财政年份:2006
- 资助金额:
$ 69.3万 - 项目类别:
Research Grant
相似国自然基金
基于MFSD2A调控血迷路屏障跨细胞囊泡转运机制的噪声性听力损失防治研究
- 批准号:82371144
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
BNIP-2调控E-cadherin细胞内分选运输的机制研究
- 批准号:32100540
- 批准年份:2021
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
磷脂分子参与植物细胞器互作及自噬的调控机制
- 批准号:91954206
- 批准年份:2019
- 资助金额:301.0 万元
- 项目类别:重大研究计划
IRE1α-XBP1在脂肪细胞和肝细胞间跨细胞信号传导机制研究
- 批准号:31900564
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
活细胞高分辨率成像解析clathrin介导的内吞囊泡形成早期内体的分子机制
- 批准号:31970659
- 批准年份:2019
- 资助金额:62.0 万元
- 项目类别:面上项目
膜蛋白TMED10调节非经典分泌分子机制的研究
- 批准号:31872832
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
TBC1d23调节细胞器互作及突变引起脑桥小脑发育不全的机制研究
- 批准号:91854121
- 批准年份:2018
- 资助金额:89.0 万元
- 项目类别:重大研究计划
细胞分泌的调控及相关肠炎的机理研究
- 批准号:31871429
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
NRT1.1磷酸化修饰调控植物侧根发育的分子细胞学机制研究
- 批准号:31871424
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: An Investigation of Microplastics Fate and Contaminant Transport in Storm Runoff, The Nexus of Environmental Engineering and Material Sciences
职业:风暴径流中微塑料的归宿和污染物输送的研究,环境工程和材料科学的联系
- 批准号:
2305189 - 财政年份:2022
- 资助金额:
$ 69.3万 - 项目类别:
Continuing Grant
CAREER: An Investigation of Microplastics Fate and Contaminant Transport in Storm Runoff, The Nexus of Environmental Engineering and Material Sciences
职业:风暴径流中微塑料的归宿和污染物输送的研究,环境工程和材料科学的联系
- 批准号:
2044836 - 财政年份:2021
- 资助金额:
$ 69.3万 - 项目类别:
Continuing Grant
PGC-1beta in the Regulation of Hepatic Lipid Metabolism
PGC-1beta 对肝脏脂质代谢的调节
- 批准号:
7315528 - 财政年份:2007
- 资助金额:
$ 69.3万 - 项目类别:
Molecular Mechanisms Controlling Endocytic Recycling
控制内吞再循环的分子机制
- 批准号:
7414993 - 财政年份:2006
- 资助金额:
$ 69.3万 - 项目类别:
Novel targets that are deregulated by loss of PTEN
由于 PTEN 缺失而解除管制的新靶点
- 批准号:
7343163 - 财政年份:2006
- 资助金额:
$ 69.3万 - 项目类别:
Novel targets that are deregulated by loss of PTEN
由于 PTEN 缺失而解除管制的新靶标
- 批准号:
7176233 - 财政年份:2006
- 资助金额:
$ 69.3万 - 项目类别:
Molecular Mechanisms Controlling Endocytic Recycling
控制内吞再循环的分子机制
- 批准号:
7227751 - 财政年份:2006
- 资助金额:
$ 69.3万 - 项目类别:
The Astrocyte Nexus: CX43-Protein Interactions
星形胶质细胞关系:CX43-蛋白质相互作用
- 批准号:
7588060 - 财政年份:2001
- 资助金额:
$ 69.3万 - 项目类别: