Machine-learning to predict and understand the zoonotic threat of E. coli O157 isolates
机器学习预测和了解大肠杆菌 O157 菌株的人畜共患威胁
基本信息
- 批准号:BB/P02095X/1
- 负责人:
- 金额:$ 54.55万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Enterohemorrhagic Escherichia coli (EHEC) O157 are bacteria that have their main reservoir in food production animals, predominately cattle, and can be responsible for serious and life-threatening infections in humans. There are specific factors that define EHEC O157, including a micro-injection (type 3 secretion) system and production of specific Shiga toxins. However, we have known for nearly twenty years that not all subtypes represent the same threat to human health and significant effort has gone into understanding why this is the case. On key reason is that there are different Shiga toxin types, some potentially more toxic than others, and their production levels differ between isolates. This variability comes from the fact that Shiga toxins are introduced into the bacteria by infection with bacterial viruses, known as bacteriophages. These integrate their DNA into the bacterial genome in a 'prophage' state. When the bacterial cell is threatened this can activate the prophage to produce copies of itself and new bacteriophages. From whole genome sequencing of E. coli we are now aware that multiple prophages are present in E. coli genomes, some in different states of decay, but they can impact on each other and recombine to produce new variants. Much of the differences between E. coli O157 isolates are down to their prophage content yet sequence identification methods generally use only 'core' genes for epidemiological studies. We have recently applied machine-learning approaches to examine whole genome sequences of E. coli O157 from cattle and humans. We use these as training sets and then ask it to predict which group other E. coli O157 isolates should be assigned to. Surprisingly it only assigns a small proportion (<10%) of isolates from cattle to the human grouping, indicating that only this small subset may be more of a threat to human health. This grant is to investigate the biological basis of this selection process. We know that the machine-learning assignment is based on discriminatory protein variants predicted to be expressed from mainly prophage genes, so this fits with our understanding of the variation present in these isolates. The proposed work will be a combination of bioinformatics research and 'wet' infection biology research. For the bioinformatics we can use subjective and objective approaches to swap gene variants, including whole prophage, between isolate sequences and re-calculate their host prediction scores. This will allow us to define the most important combinations of genes being used for the prediction of zoonotic potential. It may also highlight specific genes to simplify the identification process. In the laboratory we will initially compare isolates that are very similar at the core genome level but differ markedly in their prediction scores. We will examine their gene expression profiles, metabolic profiles and key phenotypes such as Shiga toxin production, cellular interactions and pathology in a mouse model. Then we will swap or mutate genes identified by the bioinformatics and test these strain variants in the same laboratory assays. The research should help validate this exciting new approach to understanding bacterial virulence and identify genes involved in the zoonotic threat of this dangerous pathogen. We should then be able to develop simpler approaches to identifying these specific variants on farms and intervene with, for example a vaccine, to reduce the threat to human health. The approach may also work to predict differences in virulence between human isolates and this could have repercussions for how specific outbreaks are managed. This research is timely as it builds on our recent and unique application of machine learning to predict zoonotic potential and access to fully annotated PacBio sequences of UK cattle and human E. coli O157 isolates generated in partnership with Dr James Bono (USDA, Nebraska).
肠出血性大肠杆菌(EHEC)O157是一种细菌,主要存在于食品生产动物(主要是牛)中,可导致人类严重和危及生命的感染。O157型肠出血性大肠杆菌的定义有一些特定的因素,包括微量注射(3型分泌)系统和特定滋贺毒素的产生。然而,近二十年来,我们已经知道,并非所有亚型都对人类健康构成相同的威胁,并且已经做出了重大努力来了解为什么会出现这种情况。一个关键的原因是,有不同的滋贺毒素类型,一些可能比其他更有毒,其生产水平不同的菌株。这种变异性来自于这样一个事实,即滋贺毒素是通过感染细菌病毒(称为噬菌体)而被引入细菌的。它们将DNA以“原噬菌体”状态整合到细菌基因组中。当细菌细胞受到威胁时,这可以激活原噬菌体产生自身的拷贝和新的噬菌体。从E.我们现在知道在大肠杆菌中存在多个原噬菌体。大肠杆菌基因组中,有些处于不同的衰变状态,但它们可以相互影响并重组产生新的变体。E.大肠杆菌O157分离株的噬菌体含量很低,但序列鉴定方法通常只使用“核心”基因进行流行病学研究。我们最近应用机器学习的方法来检查整个基因组序列的E。大肠杆菌O157。我们使用这些作为训练集,然后让它预测哪组E。大肠杆菌O157分离株应分配给。令人惊讶的是,它只将一小部分(<10%)来自牛的分离株分配给人类分组,这表明只有这一小部分可能对人类健康构成更大的威胁。这项资助是为了研究这种选择过程的生物学基础。我们知道,机器学习分配是基于预测主要由原噬菌体基因表达的区别性蛋白质变体,因此这符合我们对这些分离株中存在的变异的理解。拟议的工作将是生物信息学研究和“湿”感染生物学研究的结合。对于生物信息学,我们可以使用主观和客观的方法来交换基因变体,包括整个原噬菌体,分离序列之间,并重新计算其宿主预测得分。这将使我们能够确定用于预测人畜共患病潜力的最重要的基因组合。它还可以突出显示特定的基因,以简化识别过程。在实验室中,我们将首先比较在核心基因组水平上非常相似但在预测得分上明显不同的分离株。我们将在小鼠模型中研究它们的基因表达谱、代谢谱和关键表型,如滋贺毒素产生、细胞相互作用和病理学。然后,我们将交换或突变生物信息学鉴定的基因,并在相同的实验室检测中测试这些菌株变体。这项研究应该有助于验证这种令人兴奋的新方法,以了解细菌的毒力,并确定参与这种危险病原体的人畜共患病威胁的基因。然后,我们应该能够开发更简单的方法来识别农场中的这些特定变体,并进行干预,例如疫苗,以减少对人类健康的威胁。该方法还可以预测人类分离株之间的毒力差异,这可能对如何管理特定疫情产生影响。这项研究是及时的,因为它建立在我们最近和独特的机器学习应用,以预测人畜共患病的潜力和访问英国牛和人类大肠杆菌的完全注释的PacBio序列。大肠杆菌O157分离株与James Bono博士(美国农业部,内布拉斯加州)合作产生。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genome structural variation in Escherichia coli O157:H7.
- DOI:10.1099/mgen.0.000682
- 发表时间:2021-11
- 期刊:
- 影响因子:3.9
- 作者:Fitzgerald SF;Lupolova N;Shaaban S;Dallman TJ;Greig D;Allison L;Tongue SC;Evans J;Henry MK;McNeilly TN;Bono JL;Gally DL
- 通讯作者:Gally DL
Predicting Host Association for Shiga Toxin-Producing E. coli Serogroups by Machine Learning.
通过机器学习预测产志贺毒素大肠杆菌血清群的宿主关联。
- DOI:10.1007/978-1-0716-1339-9_4
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Lupolova N
- 通讯作者:Lupolova N
Whole Genome Sequence Analysis Reveals Lower Diversity and Frequency of Acquired Antimicrobial Resistance (AMR) Genes in E. coli From Dairy Herds Compared With Human Isolates From the Same Region of Central Zambia
- DOI:10.3389/fmicb.2019.01114
- 发表时间:2019-05-31
- 期刊:
- 影响因子:5.2
- 作者:Mainda, Geoffrey;Lupolova, Nadejda;Gally, David L.
- 通讯作者:Gally, David L.
Alternatives to antibiotics in a One Health context and the role genomics can play in reducing antimicrobial use.
- DOI:10.1016/j.cmi.2020.02.028
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:J. Pollock;Alison S. Low;Rebecca E. McHugh;A. Muwonge;M. Stevens;A. Corbishley;D. Gally
- 通讯作者:J. Pollock;Alison S. Low;Rebecca E. McHugh;A. Muwonge;M. Stevens;A. Corbishley;D. Gally
Shiga toxin sub-type 2a increases the efficiency of Escherichia coli O157 transmission between animals and restricts epithelial regeneration in bovine enteroids
- DOI:10.1371/journal.ppat.1008003
- 发表时间:2019-10-01
- 期刊:
- 影响因子:6.7
- 作者:Fitzgerald, Stephen F.;Beckett, Amy E.;McNeilly, Tom N.
- 通讯作者:McNeilly, Tom N.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Gally其他文献
David Gally的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Gally', 18)}}的其他基金
Defining the physiology of E. coli O157:H7 in cattle to develop phage-based interventions
定义牛体内大肠杆菌 O157:H7 的生理学以开发基于噬菌体的干预措施
- 批准号:
BB/X007022/1 - 财政年份:2023
- 资助金额:
$ 54.55万 - 项目类别:
Research Grant
Cattle farming practices and the emergence of Escherichia coli O157 (Stx2a+): an international workshop award with INTA Argentina
养牛实践和大肠杆菌 O157 (Stx2a) 的出现:与 INTA 阿根廷共同颁发的国际研讨会奖
- 批准号:
BB/T019743/1 - 财政年份:2023
- 资助金额:
$ 54.55万 - 项目类别:
Research Grant
Tackling Enterohaemorrhagic E. coli infection across continents
应对各大洲的肠出血性大肠杆菌感染
- 批准号:
BB/L026740/1 - 财政年份:2014
- 资助金额:
$ 54.55万 - 项目类别:
Research Grant
Defining the molecular basis of H7 flagellin as an adhesin and mucosal adjuvant for vaccine development
定义 H7 鞭毛蛋白作为疫苗开发的粘附素和粘膜佐剂的分子基础
- 批准号:
BB/I011625/1 - 财政年份:2012
- 资助金额:
$ 54.55万 - 项目类别:
Research Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
- 批准号:
2425300 - 财政年份:2024
- 资助金额:
$ 54.55万 - 项目类别:
Standard Grant
Machine learning algorithm to predict the postoperative activity in total knee arthroplasty patients
机器学习算法预测全膝关节置换术患者术后活动
- 批准号:
23K10518 - 财政年份:2023
- 资助金额:
$ 54.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A machine learning based fetal monitoring system to predict and prevent fetal hypoxia.
基于机器学习的胎儿监测系统,用于预测和预防胎儿缺氧。
- 批准号:
10760437 - 财政年份:2023
- 资助金额:
$ 54.55万 - 项目类别:
Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
- 批准号:
10714834 - 财政年份:2023
- 资助金额:
$ 54.55万 - 项目类别:
Multi-institutional validation of a multi-modal machine learning algorithm to predict and reduce acute care during cancer therapy
对多模式机器学习算法进行多机构验证,以预测和减少癌症治疗期间的急性护理
- 批准号:
10587221 - 财政年份:2023
- 资助金额:
$ 54.55万 - 项目类别:
How well can we predict future changes in biodiversity using machine learning? Experiments in an eco-evolutionary testbed.
我们如何利用机器学习来预测生物多样性的未来变化?
- 批准号:
2890191 - 财政年份:2023
- 资助金额:
$ 54.55万 - 项目类别:
Studentship
Application of machine learning to large clinical data sets to risk stratify MSK patients and predict outcomes of MSK intervention
将机器学习应用于大型临床数据集,对 MSK 斯隆患者进行风险分层并预测 MSK 斯隆干预的结果
- 批准号:
10072141 - 财政年份:2023
- 资助金额:
$ 54.55万 - 项目类别:
Collaborative R&D
Development of an Explainable Machine Learning Method to Predict Disease Risk from Genotype
开发一种可解释的机器学习方法来根据基因型预测疾病风险
- 批准号:
22KJ0657 - 财政年份:2023
- 资助金额:
$ 54.55万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Integrating Community Based Participatory Research and Machine Learning Methods to Predict Youth Substance Use Disorders for Urban Cities in New Jersey
整合基于社区的参与性研究和机器学习方法来预测新泽西州城市的青少年药物使用障碍
- 批准号:
10740570 - 财政年份:2023
- 资助金额:
$ 54.55万 - 项目类别:
Using Artificial Intelligence and Machine Learning to Predict Outcomes in Patients with Vascular Disease.
使用人工智能和机器学习来预测血管疾病患者的结果。
- 批准号:
476313 - 财政年份:2022
- 资助金额:
$ 54.55万 - 项目类别:
Studentship Programs














{{item.name}}会员




