Exploiting Halogenase Enzymes: New Reaction Pathways via Enzymatic CH Activation

利用卤素酶:通过酶促 CH 激活的新反应途径

基本信息

  • 批准号:
    BB/R01034X/1
  • 负责人:
  • 金额:
    $ 127.49万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

The halogens fluorine, chlorine, and bromine are amongst the most reactive elements of the periodic table, combining vigorously with other molecules when used in their native, elemental form. As part of other molecules, however, they play a quite different role, imparting valuable stability and introducing favourable functional properties. Fluorine, chlorine, and to a lesser extent bromine, are found in numerous pharmaceuticals (including drugs critical to human health such as the antibiotics vancomycin, chloramphenicol, and ciproflaxin), agrochemicals that boost crop yields, polymers and other valuable materials. Molecules possessing halogen substituents (organohalogens) are also widely used intermediates for making drugs and other products, as the halogens can be readily substituted for a range of other functional groups.Currently the manufacture of organohalogen compounds involves multistep synthetic chemical methods which use deleterious solvents, harsh chemical halogenating reagents and expensive catalysts, as well as non-renewable petrochemical precursors, which have serious detrimental environmental impact. In this project we aim to develop alternative biotechnology based processes for more economic and environmentally sustainable production of halogenated molecules. To do this we will exploit enzymes that nature has evolved (halogenases) to selectively install halogens at specific positions within target molecules of industrial importance. Nature's halogenating enzymes have evolved to halogenate natural products at very low concentrations in living systems. As a result, they do not generally have the required activity and selectivity for halogenation of pharmaceutical or agrochemical target molecules on a useful scale. In light of this, we will determine the structures of promising halogenase enzymes using X-ray crystallography to obtain a 3D image of the enzyme's active site where the substrate binds. We will use this picture to change the 3D structure of the active site using a technique called mutagenesis, which will enable the enzyme to accommodate non-natural target molecules with enhanced efficiencies. In addition to targeted approaches we will also use more random mutagenesis techniques to create libraries (many millions) of mutant halogenase enzymes, followed by new mass spectrometry imaging technology and fluorescence assays to select mutants with the required activity and selectivity.These new, optimised, halogenase enzymes will then be used to produce the key halogenated building blocks that are required for the manufacture of pharmaceuticals including antiviral agents, anticancer agents and other drugs essential for human healthcare, as well as agrochemicals that urgently are required to boost crops yields and provide more food for the growing global population. Our enzymes can also be used to introduce halogens at new positions in biologically active molecules, creating new analogs that would be difficult or impossible to access by conventional chemical halogenation methods. This ability of halogenase enzymes to selectively place chlorine or bromine atoms into molecules opens up exciting opportunities to manipulate the halogenated products in further chemical transformations. Halogens are extremely versatile functional groups, enabling us to combine halogenases with other chemical catalysis steps to create new entities featuring (for example) carbon-nitrogen, carbon-carbon, or carbon-fluorine bonds. In each case, the exquisite selectivity of the halogenase enzyme provides a chemical shortcut to making valuable products that would otherwise be made via long-winded and expensive synthetic routes.
卤素氟、氯和溴是元素周期表中反应性最强的元素之一,当以其天然元素形式使用时,它们与其他分子强烈结合。然而,作为其他分子的一部分,它们发挥着完全不同的作用,赋予有价值的稳定性并引入有利的功能特性。氟、氯和溴(在较小程度上)存在于许多药物(包括对人类健康至关重要的药物,如抗生素万古霉素、氯霉素和环丙沙星)、提高作物产量的农用化学品、聚合物和其他有价值的材料中。具有卤素取代基的分子(有机卤素)也是广泛用于制造药物和其它产品的中间体,因为卤素可以容易地被一系列其它官能团取代。目前,有机卤素化合物的制造涉及多步合成化学方法,其使用有害溶剂、苛刻的化学卤化试剂和昂贵的催化剂,以及不可再生的石油化学前体,这对环境有严重的不利影响。在这个项目中,我们的目标是开发替代生物技术为基础的工艺,更经济和环境可持续的卤化分子的生产。为了做到这一点,我们将利用自然界进化的酶(卤化酶)来选择性地将卤素安装在具有工业重要性的目标分子内的特定位置。自然界的卤化酶已经进化到在生命系统中以非常低的浓度卤化天然产物。因此,它们通常不具有在有用规模上卤化药物或农用化学品目标分子所需的活性和选择性。鉴于此,我们将使用X射线晶体学来确定有前途的卤化酶的结构,以获得酶的活性位点的3D图像,其中底物结合。我们将使用这张照片来改变活性位点的3D结构,使用一种称为诱变的技术,这将使酶能够以更高的效率容纳非天然靶分子。除了靶向方法,我们还将使用更多的随机诱变技术来创建文库(数百万)突变体卤化酶,其次是新的质谱成像技术和荧光测定,以选择具有所需活性和选择性的突变体。这些新的,优化的,然后,卤化酶将用于生产制造药物所需的关键卤化结构单元,抗病毒剂、抗癌剂和其他对人类健康至关重要的药物,以及提高作物产量和为不断增长的全球人口提供更多食物所迫切需要的农用化学品。我们的酶还可用于在生物活性分子的新位置引入卤素,产生传统化学卤化方法难以或不可能获得的新类似物。卤化酶选择性地将氯或溴原子置于分子中的这种能力为在进一步的化学转化中操纵卤化产物提供了令人兴奋的机会。卤素是极其通用的官能团,使我们能够将联合收割机卤化酶与其他化学催化步骤结合,以产生具有(例如)碳-氮、碳-碳或碳-氟键的新实体。在每种情况下,卤化酶的精确选择性都为制造有价值的产品提供了化学捷径,否则这些产品将通过冗长而昂贵的合成路线来制造。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Programmable late-stage C-H bond functionalization enabled by integration of enzymes with chemocatalysis
  • DOI:
    10.1038/s41929-021-00603-3
  • 发表时间:
    2021-04-29
  • 期刊:
  • 影响因子:
    37.8
  • 作者:
    Craven, Elliott J.;Latham, Jonathan;Micklefield, Jason
  • 通讯作者:
    Micklefield, Jason
Editorial overview: Biocatalysis and biotransformations.
编辑概述:生物催化和生物转化。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Micklefield其他文献

Sulfamide replacement of the phosphodiester linkage in dinucleotides: Synthesis and conformational analysis
二核苷酸中磷酸二酯键的磺酰胺取代:合成和构象分析
  • DOI:
    10.1016/s0040-4020(97)10421-5
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Jason Micklefield;K. Fettes
  • 通讯作者:
    K. Fettes
Streamlined recycling of S-adenosylmethionine
简化 S-腺苷甲硫氨酸的回收利用
  • DOI:
    10.1038/s41929-019-0323-6
  • 发表时间:
    2019-07-08
  • 期刊:
  • 影响因子:
    44.600
  • 作者:
    Jason Micklefield
  • 通讯作者:
    Jason Micklefield
Biophysical and cellular-uptake properties of mixed-sequence pyrrolidine-amide oligonucleotide mimics.
混合序列吡咯烷酰胺寡核苷酸模拟物的生物物理和细胞摄取特性。
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Worthington;Jason Micklefield
  • 通讯作者:
    Jason Micklefield
Engineering the biosynthesis of nonribosomal lipopeptide antibiotics
非核糖体脂肽抗生素的生物合成工程
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jason Micklefield;Colin P. Smith;M. Hicks;C. Kettner
  • 通讯作者:
    C. Kettner
Precursors from Amino Acid Metabolism Nonribosomal peptides
氨基酸代谢非核糖体肽的前体
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Wilkinson;Jason Micklefield
  • 通讯作者:
    Jason Micklefield

Jason Micklefield的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Micklefield', 18)}}的其他基金

Pathways to improved polyene antimicrobial agents (PIPA)
改进多烯抗菌剂 (PIPA) 的途径
  • 批准号:
    BB/X015645/1
  • 财政年份:
    2023
  • 资助金额:
    $ 127.49万
  • 项目类别:
    Research Grant
Engineering macrolactam antimicrobial agents (EMLA)
工程大环内酰胺抗菌剂(EMLA)
  • 批准号:
    BB/X002241/1
  • 财政年份:
    2023
  • 资助金额:
    $ 127.49万
  • 项目类别:
    Research Grant
Methods for enzymatic synthesis of modified nucleic acids (MESNA)
修饰核酸的酶促合成方法 (MESNA)
  • 批准号:
    BB/X008991/1
  • 财政年份:
    2023
  • 资助金额:
    $ 127.49万
  • 项目类别:
    Research Grant
Enzymatic Approaches for Next Generation Peptide Synthesis
下一代肽合成的酶法
  • 批准号:
    EP/Y023714/1
  • 财政年份:
    2023
  • 资助金额:
    $ 127.49万
  • 项目类别:
    Fellowship
Methods for bioengineering NRPS/PKS assembly lines delivering peptide natural products with electrophilic warheads.
使用亲电弹头提供肽天然产物的生物工程 NRPS/PKS 装配线方法。
  • 批准号:
    BB/V016083/1
  • 财政年份:
    2022
  • 资助金额:
    $ 127.49万
  • 项目类别:
    Research Grant
Antibiotic K16: Elucidation and Engineering Pathways to New Anti-infective Agents.
抗生素 K16:新型抗感染药物的阐明和工程途径。
  • 批准号:
    BB/V008552/1
  • 财政年份:
    2021
  • 资助金额:
    $ 127.49万
  • 项目类别:
    Research Grant
Next Generation Enzymatic and Integrated Catalytic Approaches for Amide Synthesis
酰胺合成的下一代酶促和集成催化方法
  • 批准号:
    EP/V048929/1
  • 财政年份:
    2021
  • 资助金额:
    $ 127.49万
  • 项目类别:
    Research Grant
A Synthetic Biology Approach for the Total Biosynthesis of Semi-Synthetic Antibiotics
半合成抗生素全生物合成的合成生物学方法
  • 批准号:
    BB/N023536/1
  • 财政年份:
    2016
  • 资助金额:
    $ 127.49万
  • 项目类别:
    Research Grant
NATURAL PRODUCTS DISCOVERY AND BIOENGINEERING NETWORK (NPRONET)
天然产品发现和生物工程网络 (NPRONET)
  • 批准号:
    BB/L013754/1
  • 财政年份:
    2014
  • 资助金额:
    $ 127.49万
  • 项目类别:
    Research Grant
Bioengineering of next generation lipoglycopeptide antibiotics
下一代脂糖肽抗生素的生物工程
  • 批准号:
    BB/L002299/1
  • 财政年份:
    2013
  • 资助金额:
    $ 127.49万
  • 项目类别:
    Research Grant

相似海外基金

Development of novel halogenase enzymes for biopharmaceutical applications
开发用于生物制药应用的新型卤化酶
  • 批准号:
    2265874
  • 财政年份:
    2019
  • 资助金额:
    $ 127.49万
  • 项目类别:
    Studentship
Postdoctoral Fellowship in Biology FY 2019: The Diversity of a New Carbon-Activating Halogenase from Cyanobacteria
2019 财年生物学博士后奖学金:来自蓝藻的新型碳活化卤化酶的多样性
  • 批准号:
    1907240
  • 财政年份:
    2019
  • 资助金额:
    $ 127.49万
  • 项目类别:
    Fellowship Award
Elucidating and exploiting halogenase recruitment beta hairpin docking domains in nonribosomal peptide biosynthesis
阐明和利用非核糖体肽生物合成中卤化酶募集β发夹对接结构域
  • 批准号:
    1782570
  • 财政年份:
    2016
  • 资助金额:
    $ 127.49万
  • 项目类别:
    Studentship
Purification and characterisation of the monodechloroaminopyrrolnitrin 3-halogenase PrnC from pyrrolnitrin biosynthesis
吡咯尼群生物合成中单脱氯氨基吡咯尼群 3-卤化酶 PrnC 的纯化和表征
  • 批准号:
    190227747
  • 财政年份:
    2010
  • 资助金额:
    $ 127.49万
  • 项目类别:
    Research Grants
STRUCTURE DETERMINATION OF HALOGENASE CMLS
卤素酶 CMLS 的结构测定
  • 批准号:
    7957234
  • 财政年份:
    2009
  • 资助金额:
    $ 127.49万
  • 项目类别:
Charakterisierung des Tryptophan-7-Halogenase-Systems
色氨酸 7-卤化酶系统的表征
  • 批准号:
    5283792
  • 财政年份:
    2000
  • 资助金额:
    $ 127.49万
  • 项目类别:
    Research Grants
Die Rolle einer Halogenase und einer "Nicht-Häm-Haloperoxidase" in der Biosynthese des Glykopeptid-Antibiotikums Balhimycin
卤化酶和“非血红素卤过氧化物酶”在糖肽抗生素巴希霉素生物合成中的作用
  • 批准号:
    5225008
  • 财政年份:
    1999
  • 资助金额:
    $ 127.49万
  • 项目类别:
    Research Grants
Die Rolle einer Halogenase und einer "Nicht-Häm-Haloperoxidase" in der Biosynthese des Glykopeptidantibiotikums Balhimycin
卤化酶和“非血红素卤过氧化物酶”在糖肽抗生素巴希霉素生物合成中的作用
  • 批准号:
    5225002
  • 财政年份:
    1999
  • 资助金额:
    $ 127.49万
  • 项目类别:
    Research Grants
Involvement of a halogenase in a non-heme-haloxidase in the biosynthesis of balhimycin
非血红素卤氧化酶中的卤化酶参与巴希霉素的生物合成
  • 批准号:
    5225014
  • 财政年份:
    1999
  • 资助金额:
    $ 127.49万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了