A Chemical Imaging Platform for Discovery Biosciences (CIP-DB).

Discovery Biosciences 的化学成像平台 (CIP-DB)。

基本信息

  • 批准号:
    BB/R013667/1
  • 负责人:
  • 金额:
    $ 44.98万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Understanding the biology of cells, their component molecules and behaviors and characteristics when aggregated into tissues has always been a key goal in life science and medicine. Advances in microscopy are profoundly changing the way cells, sub-cellular structures, molecules and tissues can be studied. For a research intensive institution, such as UCL, to remain a competitive leader in biomedical sciences, it is essential to adopt transformative imaging technologies when their power is recognized, the technology is affordable, well understood and established as viable for transformative bioscience work. Furthering our understanding of health and diseases requires a deep knowledge of the cell, its constituents and their development from very early stages of life. How to image intact, large-scale, live or preserved postmortem cells, tissues and organisms at high spatial and spectroscopic resolution with and sensitivity remains a key challenge.UCL's international reputation as a key contributor in bioscience/biomedical discoveries has, in part, been successful because of it's sustained commitment to be an early adopter of new, transformative technologies. One new and powerful pathway toward this goal is to image directly (without the use of reporter probe molecules) the chemical and biochemical properties of cells and tissues over time. This must be done with equipment that is capable of capturing at high speed images with sufficient fine spatial detail and at very high chemical resolution so that hitherto, unknown processes can be discovered and studied. Raman imaging technology is particularly suited to the study of key distibutions and properties of biomolecules during embryogenesis, tissue differentiation, changes in phenotype during health and disease and performance of their biochemical function. CIP-DB will add a new dimension of support to cutting edge research in life and biomedical sciences. The Raman microscope is a unique system that enables acquisition of highly detailed, qualitative and quantitative information on the chemical composition of a tissue or cellular sample pixel-by-pixel. From this data images displaying the distribution of chemical species much like a multi-idimensional virtual staining, but without the introduction of probes, dyes, antibodies or genetically encoded markers, can be constructed. These images provide rich biochemical and molecular biological information and their spatial distribution. This characterization of biological samples is essentially orthogonal to that collected through other light microscopic techniques like the fluorescence imaging used almost universally and exclusively in modern cellular biosciences. Furthermore confocality and near infrared illumination will allow deep probing of samples and 3D chemical image reconstruction. Contour tracking technology will allow application of the technique to non-flat, rough or complex surfaces. This will allow unprocessed tissue samples to be analysed as well as samples where the thickness is changing over the duration of the experiment through growth, swelling or other changes.The main co-applicants on this proposal are, therefore, research groups at UCL and colleagues in nearby research institutes whose focus is on aspects of molecular cell and developmental biology and biochemistry trying to elucidate the fundamental processes and key events/factors that underlie organismal development in both health and disease. In addition, the microscope will be accessible to a large number of diverse research projects addressing many outstanding questions in fundamental biosciences. The requested funds will enable us to obtain a one of the leading Raman microscope that will significantly enhance our research capabilities and lead to new scientific discoveries.
了解细胞的生物学,它们的组成分子以及聚集成组织时的行为和特征一直是生命科学和医学的关键目标。显微镜的进步正在深刻地改变细胞、亚细胞结构、分子和组织的研究方式。对于像UCL这样的研究密集型机构来说,要保持生物医学科学的竞争力,必须采用变革性成像技术,当它们的力量得到认可时,该技术是负担得起的,很好地理解并确立为变革性生物科学工作的可行性。进一步了解健康和疾病需要深入了解细胞,其成分及其在生命早期阶段的发展。如何在高空间和光谱分辨率下对完整的、大规模的、活的或保存的死后细胞、组织和生物体进行成像仍然是一个关键挑战。UCL作为生物科学/生物医学发现的关键贡献者的国际声誉部分是成功的,因为它一直致力于成为新的变革性技术的早期采用者。一个新的和强大的途径实现这一目标是直接成像(不使用报告探针分子)的化学和生物化学性质的细胞和组织随着时间的推移。这必须使用能够以足够精细的空间细节和非常高的化学分辨率高速捕获图像的设备来完成,以便可以发现和研究迄今为止未知的过程。拉曼成像技术特别适用于研究胚胎发生、组织分化、健康和疾病期间表型变化及其生化功能表现期间生物分子的关键分布和性质。CIP-DB将为生命和生物医学科学的前沿研究提供新的支持。拉曼显微镜是一种独特的系统,可以逐像素获取组织或细胞样本化学成分的高度详细的定性和定量信息。根据该数据,可以构建显示化学物质分布的图像,非常像多维虚拟染色,但不引入探针、染料、抗体或遗传编码的标记。这些图像提供了丰富的生物化学和分子生物学信息及其空间分布。生物样品的这种表征基本上与通过其他光学显微镜技术收集的样品正交,例如在现代细胞生物科学中几乎普遍和专门使用的荧光成像。此外,共焦和近红外照明将允许样品的深度探测和3D化学图像重建。轮廓跟踪技术将允许将该技术应用于非平坦、粗糙或复杂的表面。这将允许分析未处理的组织样本以及厚度在实验期间通过生长、膨胀或其他变化而变化的样本。因此,该提案的主要共同申请人是:伦敦大学学院的研究小组和附近研究机构的同事,他们的重点是分子细胞和发育生物学和生物化学方面,试图阐明基本过程和关键事件。健康和疾病中生物体发展的基础因素。此外,显微镜将可用于大量不同的研究项目,解决基础生物科学中许多悬而未决的问题。所要求的资金将使我们能够获得领先的拉曼显微镜之一,这将大大提高我们的研究能力,并导致新的科学发现。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rapid and complete paraffin removal from human tissue sections delivers enhanced Raman spectroscopic and histopathological analysis.
  • DOI:
    10.1039/c9an01030k
  • 发表时间:
    2020-02-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gaifulina R ;Caruana DJ ;Oukrif D ;Guppy NJ ;Culley S ;Brown R ;Bell I ;Rodriguez-Justo M ;Lau K ;Thomas GMH
  • 通讯作者:
    Thomas GMH
Deep Learning Applied to Raman Spectroscopy for the Detection of Microsatellite Instability/MMR Deficient Colorectal Cancer.
  • DOI:
    10.3390/cancers15061720
  • 发表时间:
    2023-03-11
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
  • 通讯作者:
Machine Learning of Raman Spectroscopy Data for Classifying Cancers: A Review of the Recent Literature.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Geraint Thomas其他文献

476 - USE OF NEUROPATHIC PAIN MEDICATIONS PRIOR TO TOTAL KNEE REPLACEMENT: A NATIONAL POPULATION-BASED CASE-CONTROL STUDY IN ENGLAND
  • DOI:
    10.1016/j.joca.2024.02.489
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Thomas W. Appleyard;George Peat;Geraint Thomas;Andrea Dell'Isola;Clara Hellberg;Aleksandra Turkiewicz;Martin Englund;Dahai Yu
  • 通讯作者:
    Dahai Yu
Rapid motif-based prediction of circular permutations in multi-domain proteins
基于基序的多域蛋白质循环排列的快速预测
  • DOI:
    10.1093/bioinformatics/bti085
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    J. Weiner;Geraint Thomas;E. Bornberg
  • 通讯作者:
    E. Bornberg
Template-Free 13-Protofilament Microtubule-Map Assembly Visualised at 8Å Resolution
  • DOI:
    10.1016/j.bpj.2010.12.2644
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Franck Fourniol;Charles V. Sindelar;Beatrice Amigues;Daniel K. Clare;Geraint Thomas;Mylene Perderiset;Fiona Francis;Anne Houdusse;Carolyn A. Moores
  • 通讯作者:
    Carolyn A. Moores
Density guided importance sampling: application to a reduced model of protein folding
密度引导重要性采样:应用于蛋白质折叠简化模型
  • DOI:
    10.1093/bioinformatics/bti421
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Geraint Thomas;R. Sessions;M. J. Parker
  • 通讯作者:
    M. J. Parker
A delayed and innocuous presentation of odontoid peg fracture – Implications for osteopaths
  • DOI:
    10.1016/j.ijosm.2009.10.005
  • 发表时间:
    2010-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Julian Chakraverty;Nick Snelling;Geraint Thomas;Chika Uzoigwe
  • 通讯作者:
    Chika Uzoigwe

Geraint Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Geraint Thomas', 18)}}的其他基金

Learn to Discover (L2D): A Training Platform in Data Sciences and Machine Learning for Biomedicine and Health Researchers.
学习发现 (L2D):面向生物医学和健康研究人员的数据科学和机器学习培训平台。
  • 批准号:
    MR/V039229/1
  • 财政年份:
    2021
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Research Grant
University College London 2021 Flexible Talent Mobility Account
伦敦大学学院 2021 年灵活人才流动账户
  • 批准号:
    BB/W510853/1
  • 财政年份:
    2021
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Research Grant
University College London Flexible Talent Mobility Account
伦敦大学学院灵活人才流动账户
  • 批准号:
    BB/S508019/1
  • 财政年份:
    2018
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Research Grant
SysMIC 2.0
系统MIC 2.0
  • 批准号:
    BB/P023819/1
  • 财政年份:
    2017
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Research Grant
Systems training in maths informatics and computational biology (SySMIC)
数学信息学和计算生物学系统培训 (SySMIC)
  • 批准号:
    BB/I014837/1
  • 财政年份:
    2012
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Research Grant

相似国自然基金

非小细胞肺癌Biomarker的Imaging MS研究新方法
  • 批准号:
    30672394
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Australian Advanced Metabolic Signal Discovery, and Imaging Platform
澳大利亚先进代谢信号发现和成像平台
  • 批准号:
    LE240100068
  • 财政年份:
    2024
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
CAREER: Intelligent Multi-Contrast Imaging Platform for Needle-Based Interventions
职业:用于针干预的智能多对比成像平台
  • 批准号:
    2238648
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Continuing Grant
Optical platform for functional longitudinal imaging of metabolite uptake in vivo
用于体内代谢物摄取功能纵向成像的光学平台
  • 批准号:
    10585764
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
A super-resolution microscopy platform for imaging cells at multiple spatial scales
用于在多个空间尺度上成像细胞的超分辨率显微镜平台
  • 批准号:
    BB/X019845/1
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Research Grant
Acquisition of multi-mode, high-resolution, high-sensitivity imaging platform
购置多模式、高分辨率、高灵敏度成像平台
  • 批准号:
    10629563
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
MR Fingerprinting based Quantitative Imaging and Analysis Platform (MRF-QIA) for brain tumors.
基于 MR 指纹的脑肿瘤定量成像和分析平台 (MRF-QIA)。
  • 批准号:
    10593584
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
Development of a prototype clinical theranostic platform combining Magnetic Particle Imaging (MPI) and Magnetic Fluid Hyperthermia (MFH) for the treatment of brain tumors
开发结合磁粒子成像(MPI)和磁流体热疗(MFH)的原型临床治疗平台,用于治疗脑肿瘤
  • 批准号:
    10761630
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
I-Corps: Ultrahigh resolution human tissue imaging platform
I-Corps:超高分辨率人体组织成像平台
  • 批准号:
    2324844
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
Structural biology and imaging platform
结构生物学和成像平台
  • 批准号:
    MC_UU_00034/7
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Intramural
Ultra-low distortion and noise electronics to enable a clinical MPI imaging platform
超低失真和噪声电子器件支持临床 MPI 成像平台
  • 批准号:
    10761613
  • 财政年份:
    2023
  • 资助金额:
    $ 44.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了