Reverse engineering cell competition using automated microscopy and recurrent neural networks

使用自动显微镜和循环神经网络进行逆向工程细胞竞争

基本信息

  • 批准号:
    BB/S009329/1
  • 负责人:
  • 金额:
    $ 63.58万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

The aim of this project is to use state-of-the-art machine learning (ML), automated time-lapse microscopy, and proteomics to understand cell competition. Cell competition is a phenomenon that results in the elimination of less fit cells from a tissue - a critical process in development, homeostasis and disease. The viability of loser cells depends strongly on context: when they are cultured alone, they thrive, but when in a mixed population, they are eliminated by cells with greater fitness. In development, competition acts as a quality control mechanism and also participates in pattern formation. In ageing, competition may eliminate senescent cells from tissues to prevent age-related pathologies. In stem cell niches, competition may determine which cells differentiate and which remain pluripotent. A number of mechanisms of cell competition have been identified to date involving either biochemical competition (for example through competition for pro-survival growth factors) or mechanical competition (for example a fast growing clone compresses cells in a slow growing clone, which results in cell extrusion for the now denser slow growing clone).While competition was initially thought to take place only at the interface between cell lineages, the discovery of mechanical competition revealed that this is not necessarily the case and that extrusion may take place several cell diameters away from this interface.To date, the vast majority of studies have examined the biochemical mechanisms of competition in single cells and competition at the population level, however it is becoming increasingly clear that the topology of the tissue plays a central role in determining the outcome of competition. Despite this, cell competition remains poorly understood -- we do not know the interaction "rules" that determine each cell's fate. This is largely because most studies only quantify whole population shifts for very few time points and for few cells. One major obstacle to understanding how population shifts occur as a result of single cell behaviours is that it requires thousands of cells to be tracked over hundreds of time points. To address this challenge, we recently built the first deep learning and automated single-cell microscopy system to analyse cell competition. We used deep convolutional neural networks to analyse the cell cycle state of millions of single cells in mechanical competition, including cell division and death.In this project, we will use the full scope of the information contained in our time-lapse data to determine the physical and topological parameters that govern cell competition. We will develop a deep learning approach to extract time-dependent features of a single-cell's environment that predicts its fate in biochemical and mechanical competition. We will use the ML model to determine what physical and topological features govern cell competition. We will combine ML and proteomics to identify proteins involved in the commitment pathway, determine their hierarchy in the signalling cascade, and identify convergent pathways.
这个项目的目的是使用最先进的机器学习(ML)、自动延时显微镜和蛋白质组学来了解细胞竞争。细胞竞争是一种导致组织中不太适合的细胞被清除的现象--这是发育、体内平衡和疾病的关键过程。失败细胞的生存能力强烈依赖于环境:当它们单独培养时,它们会茁壮成长,但当它们处于混合种群中时,它们会被更适合的细胞淘汰。在发展中,竞争既是一种质量控制机制,也参与了格局的形成。在衰老过程中,竞争可能会消除组织中的衰老细胞,以防止与年龄相关的病理。在干细胞的缝隙中,竞争可能决定哪些细胞分化,哪些保持多能性。到目前为止,已经确定了许多细胞竞争的机制,涉及生化竞争(例如,通过竞争有利于生存的生长因子)或机械竞争(例如,快速生长的克隆压缩生长缓慢的克隆中的细胞,这导致现在密度更高的缓慢生长的克隆的细胞被挤出)。虽然竞争最初被认为只发生在细胞谱系之间的界面上,但机械竞争的发现揭示了情况并不一定是这样,并且挤出可能发生在距离该界面几个细胞直径的地方。迄今为止,绝大多数研究都研究了单细胞竞争的生化机制和种群水平的竞争,然而,越来越清楚的是,组织的拓扑结构在决定竞争结果方面发挥着核心作用。尽管如此,细胞竞争仍然知之甚少--我们不知道决定每个细胞命运的相互作用“规则”。这在很大程度上是因为大多数研究只量化了很少的时间点和少数细胞的整个种群转移。理解单个细胞行为如何导致种群转移的一个主要障碍是,它需要在数百个时间点上跟踪数千个细胞。为了应对这一挑战,我们最近建立了第一个深度学习和自动化单细胞显微镜系统来分析细胞竞争。我们使用深度卷积神经网络分析了数百万个单细胞在机械竞争中的细胞周期状态,包括细胞分裂和死亡。在这个项目中,我们将使用我们的时移数据中包含的全部信息来确定控制细胞竞争的物理和拓扑参数。我们将开发一种深度学习方法来提取单细胞环境中预测其在生化和机械竞争中的命运的时间依赖特征。我们将使用ML模型来确定控制细胞竞争的物理和拓扑特征。我们将结合ML和蛋白质组学来确定参与承诺途径的蛋白质,确定它们在信号级联中的层次结构,并确定收敛途径。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Convolutional Neural Networks for Classifying Chromatin Morphology in Live-Cell Imaging.
用于活细胞成像中染色质形态分类的卷积神经网络。
Learning dynamic image representations for self-supervised cell cycle annotation
  • DOI:
    10.1101/2023.05.30.542796
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kristina Ulicna;M. Kelkar;Christopher J. Soelistyo;G. Charras;Alan R. Lowe
  • 通讯作者:
    Kristina Ulicna;M. Kelkar;Christopher J. Soelistyo;G. Charras;Alan R. Lowe
Learning biophysical determinants of cell fate with deep neural networks
使用深度神经网络学习细胞命运的生物物理决定因素
  • DOI:
    10.1038/s42256-022-00503-6
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    23.8
  • 作者:
    Soelistyo C
  • 通讯作者:
    Soelistyo C
Virtual perturbations to assess explainability of deep-learning based cell fate predictors
虚拟扰动评估基于深度学习的细胞命运预测因子的可解释性
  • DOI:
    10.1101/2023.07.17.548859
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Soelistyo C
  • 通讯作者:
    Soelistyo C
Automated deep lineage tree analysis using a Bayesian single cell tracking approach
使用贝叶斯单细胞跟踪方法进行自动深度谱系树分析
  • DOI:
    10.1101/2020.09.10.276980
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ulicna K
  • 通讯作者:
    Ulicna K
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Lowe其他文献

Identity Drift: The Multivocality of Ethical Identity in Islamic Financial Institution
身份漂移:伊斯兰金融机构道德身份的多重性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    N. N. Hidayah;Alan Lowe;Ivo De Loo
  • 通讯作者:
    Ivo De Loo
Therapeutic governance: The art of mediating shame and blame and quasi-judicial pragmatic technologies in Indonesian government auditor-auditee engagements
  • DOI:
    10.1016/j.cpa.2024.102765
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nunung Nurul Hidayah;Firdaus Amyar;Alan Lowe
  • 通讯作者:
    Alan Lowe
Green governmentality and climate change risk management: the case of a regulatory reform in Bangladesh
绿色治理与气候变化风险管理:孟加拉国监管改革案例
Constructing an ‘efficient frontier’ of accounting journal quality
  • DOI:
    10.1016/j.bar.2006.02.003
  • 发表时间:
    2006-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alan Lowe;Joanne Locke
  • 通讯作者:
    Joanne Locke
Effect of lemborexant on cognition in patients with comorbid insomnia disorder and mild obstructive sleep apnea
  • DOI:
    10.1016/j.jns.2023.122246
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Margaret Moline;Jocelyn Cheng;Dinesh Kumar;Barbara Ramos;Alan Lowe
  • 通讯作者:
    Alan Lowe

Alan Lowe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Lowe', 18)}}的其他基金

Micro-optics and photosynthetic light-trapping in cyanobacteria
蓝藻的微光学和光合光捕获
  • 批准号:
    BB/P000568/1
  • 财政年份:
    2016
  • 资助金额:
    $ 63.58万
  • 项目类别:
    Research Grant

相似国自然基金

软骨调节素调控BMSCs骨和软骨双向分化平衡的研究
  • 批准号:
    81272128
  • 批准年份:
    2012
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
Frontiers of Environmental Science & Engineering
  • 批准号:
    51224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
基于脂肪干细胞的同种异体肌腱缺损修复及机制
  • 批准号:
    81101359
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21024805
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
脂肪来源干细胞诱导尿路上皮细胞及其机制的研究
  • 批准号:
    81070605
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
Ihh在组织工程骨构建中作用和机制研究
  • 批准号:
    30973069
  • 批准年份:
    2009
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
Leydig干细胞纯化、扩增及雄激素分泌组织构建
  • 批准号:
    30970736
  • 批准年份:
    2009
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
预构血管化支架以构建大体积岛状组织工程化脂肪瓣的实验研究
  • 批准号:
    30901566
  • 批准年份:
    2009
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
人脐血间充质干细胞成骨潜能亚群的特异性分子标志
  • 批准号:
    30800232
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Interplay between reverse transcription and host restriction
逆转录与宿主限制之间的相互作用
  • 批准号:
    10607086
  • 财政年份:
    2023
  • 资助金额:
    $ 63.58万
  • 项目类别:
Reverse Tissue-Manufacturing of the Multicellular Sinoatrial Node Organoids
多细胞窦房结类器官的逆向组织制造
  • 批准号:
    10660542
  • 财政年份:
    2023
  • 资助金额:
    $ 63.58万
  • 项目类别:
Reverse Engineering the Extracellular Neighborhood to Support the Functional Tissue Unit: A Use Case to Restore Ovarian Function
对细胞外邻域进行逆向工程以支持功能组织单位:恢复卵巢功能的用例
  • 批准号:
    10530993
  • 财政年份:
    2022
  • 资助金额:
    $ 63.58万
  • 项目类别:
Intranasal Delivery of Telomerase Reverse Transcriptase mRNA for Therapy ofTraumatic Brain Injury
鼻内递送端粒酶逆转录酶 mRNA 用于治疗创伤性脑损伤
  • 批准号:
    10602034
  • 财政年份:
    2022
  • 资助金额:
    $ 63.58万
  • 项目类别:
Reverse Engineering the Extracellular Neighborhood to Support the Functional Tissue Unit: A Use Case to Restore Ovarian Function
对细胞外邻域进行逆向工程以支持功能组织单位:恢复卵巢功能的用例
  • 批准号:
    10689815
  • 财政年份:
    2022
  • 资助金额:
    $ 63.58万
  • 项目类别:
Reverse Engineering of Cell Senescence
细胞衰老的逆向工程
  • 批准号:
    10573323
  • 财政年份:
    2022
  • 资助金额:
    $ 63.58万
  • 项目类别:
Reverse Engineering of Cell Senescence
细胞衰老的逆向工程
  • 批准号:
    10365131
  • 财政年份:
    2022
  • 资助金额:
    $ 63.58万
  • 项目类别:
Tailored siRNA delivery to human endothelium to inhibit and reverse inflammatory damage following ischemia reperfusion injury in the kidney
将定制的 siRNA 递送至人内皮细胞以抑制和逆转肾脏缺血再灌注损伤后的炎症损伤
  • 批准号:
    10657835
  • 财政年份:
    2022
  • 资助金额:
    $ 63.58万
  • 项目类别:
Tailored siRNA delivery to human endothelium to inhibit and reverse inflammatory damage following ischemia reperfusion injury in the kidney
定制的 siRNA 递送至人内皮细胞以抑制和逆转肾脏缺血再灌注损伤后的炎症损伤
  • 批准号:
    10686146
  • 财政年份:
    2022
  • 资助金额:
    $ 63.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了