Synaptic strength instability from stochastic gene expression in neurons

神经元随机基因表达导致的突触强度不稳定性

基本信息

  • 批准号:
    BB/W001845/1
  • 负责人:
  • 金额:
    $ 46.98万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Memories can last a lifetime. For many decades, neuroscientists assumed that the stability of our long-term memories was due to stability in the underlying brain circuitry where the information is stored. This picture has changed dramatically over the past 10-15 years, when experimental neuroscientists used cutting edge microscopy and molecular biology methods to track the sizes of synapses - the connections between neurons where information is thought to be stored - longitudinally in the brains of animals over days and weeks. It turned out that individual synapses continually fluctuate in size on a timescale of hours-days, much faster than the years timescale of long-term memories. This contradiction poses a deep challenge for our understanding of memory, and although theoretical neuroscientists have some ideas for how it may be resolved, it basically remains a mystery.A second source of confusion is the origin of the fluctuations. Beyond a general belief that "biology is noisy", it is not clear what is driving these spontaneous changes in synapse size. An understanding of their sources will be important, for three reasons: 1) it will tell us which cellular properties regulate the fluctuations and which don't; 2) it will give constraints for higher level theoretical models of memory; 3) it may give clues into potential beneficial roles for the fluctuations. In this project we will use mathematical modelling, computer simulations, and data analysis to build and test a new theory of synaptic fluctuations, based on the hypothesis that they arise from gene expression noise.All cells turn genes on and off to implement cellular functions, and neurons are no exception. When a cell turns a gene 'on', it triggers a biochemical signalling cascade that results in more of its corresponding protein being manufactured. However because this process happens at the level of single molecules diffusing randomly, it is somewhat unreliable, and the amount of protein that gets manufactured varies from moment to moment in a partially uncontrolled way. This 'gene expression noise' is heavily studied in simple cells like bacteria, yeast and some mammalian neurons. Here we will ask, for the first time, if it can plausibly explain synapse size fluctuations in neurons. We will adapt existing mathematical models of stochastic gene expression developed for simple cells, and adapt them for neurons. Neurons are unlike most cells because of their extended tree-shapes, which complicates the mathematical analysis somewhat but can introduce some counter-intuitive effects. First we will analyse these 'simple' mathematical models to get an insight into the key components controlling fluctuation size and timescale. Then we will run detailed computer simulations of more complicated versions of the models with more biological details added. These will produce hard quantitative predictions. Finally, we will test the model's predictions against three previously recorded datasets, provided by our international collaborators.If successful, this interdisciplinary project will open up new avenues of research on synaptic fluctuations, and give clues for solving the puzzle of how brains can store stable long-term memories despite their unstable components.
记忆可以持续一生。几十年来,神经科学家一直认为,我们长期记忆的稳定性是由于存储信息的底层大脑回路的稳定性。在过去的10-15年里,这一情况发生了巨大的变化,当时实验神经科学家使用尖端的显微镜和分子生物学方法来跟踪突触的大小-神经元之间的连接被认为是存储信息-在动物大脑中纵向数天和数周。事实证明,单个突触的大小在小时-天的时间尺度上不断波动,比长期记忆的年时间尺度快得多。这种矛盾对我们理解记忆提出了深刻的挑战,尽管理论神经科学家对如何解决它有一些想法,但它基本上仍然是一个谜。第二个混乱的来源是波动的起源。除了普遍认为“生物学是嘈杂的”之外,还不清楚是什么驱动了突触大小的自发变化。了解它们的来源将是重要的,原因有三:1)它将告诉我们哪些细胞特性调节波动,哪些不调节; 2)它将为更高层次的记忆理论模型提供约束; 3)它可能为波动的潜在有益作用提供线索。在这个项目中,我们将使用数学建模,计算机模拟和数据分析来建立和测试一个新的突触波动理论,该理论基于一个假设,即突触波动来自基因表达噪声。所有细胞都通过基因的开启和关闭来实现细胞功能,神经元也不例外。当一个细胞打开一个基因时,它会触发一个生化信号级联反应,导致更多相应的蛋白质被制造出来。然而,因为这个过程发生在单分子随机扩散的水平上,所以它有点不可靠,并且制造的蛋白质的量以部分不受控制的方式随时变化。这种“基因表达噪音”在细菌、酵母和一些哺乳动物神经元等简单细胞中得到了大量研究。在这里,我们将第一次问,它是否可以合理地解释神经元中突触大小的波动。我们将调整现有的随机基因表达的数学模型,为简单的细胞,并适应他们的神经元。神经元与大多数细胞不同,因为它们具有延伸的树状形状,这使数学分析变得复杂,但可能会引入一些反直觉的效果。首先,我们将分析这些“简单”的数学模型,以深入了解控制波动大小和时间尺度的关键因素。然后,我们将对添加更多生物学细节的更复杂版本的模型进行详细的计算机模拟。这将产生难以量化的预测。最后,我们将用国际合作者提供的三个先前记录的数据集来测试模型的预测。如果成功,这个跨学科项目将为突触波动的研究开辟新的途径,并为解决大脑如何在不稳定的成分下储存稳定的长期记忆的难题提供线索。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cian O'Donnell其他文献

BrainSLAM: SLAM on Neural Population Activity Data
BrainSLAM:神经群体活动数据的 SLAM
  • DOI:
    10.48550/arxiv.2402.00588
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kipp Freud;Nathan Lepora;Matt W. Jones;Cian O'Donnell
  • 通讯作者:
    Cian O'Donnell
PO-05-015 REGION-SPECIFIC FREQUENCY DEPENDENT UPREGULATION OF SENESCENCE MARKERS IN THE LEFT ATRIUM IN A CHRONIC ATRIAL FIBRILLATION CANINE MODEL
PO-05-015 慢性心房颤动犬模型左心房衰老标志物的区域特异性频率依赖性上调
  • DOI:
    10.1016/j.hrthm.2025.03.1413
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Cian O'Donnell;Aleksei Mikhailov;Shin Yoo;Lauren Benson;Wenwei Zhang;David Johnson;William Marszalec;Markus Rottmann;Karim Ullah;Rongxue Wu;Rishi Arora;Asish Ghosh
  • 通讯作者:
    Asish Ghosh
PO-05-108 DISRUPTION OF MICROTUBULE NETWORK IS DEPENDENT ON FREQUENCY-DEPENDENT AND NOX2-GENERATED-ROS IN CANINE ATRIAL MYOCYTES
犬心房肌细胞中微管网络的破坏依赖于频率依赖性和由 NOX2 产生的活性氧簇
  • DOI:
    10.1016/j.hrthm.2025.03.1506
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Shin Yoo;William Marszalec;Wenwei Zhang;Asish Ghosh;Anna Pfenniger;Aleksei Mikhailov;Cian O'Donnell;Markus Rottmann;David Johnson;Lauren Benson;Jorge Otero Cure;Justin Ng;Karim Ullah;Rongxue Wu;John A. Wasserstrom;Rishi Arora
  • 通讯作者:
    Rishi Arora
PO-05-095 DIFFERENTIAL TEMPORAL DYNAMICS OF PARASYMPATHETIC AND SYMPATHETIC CARDIAC NERVE ACTIVITY AND ELECTROGRAM PATTERNS IN A CHRONIC ATRIAL FIBRILLATION CANINE MODEL
慢性心房颤动犬模型中副交感神经和交感神经心脏神经活动及心电图模式的差异时间动态
  • DOI:
    10.1016/j.hrthm.2025.03.1493
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Aleksei Mikhailov;Anna Pfenniger;Justin Ng;Lauren Benson;Ashita Bhatnagar;Amy Burrell;David Johnson;Wenwei Zhang;William Marszalec;Asish Ghosh;Shin Yoo;Cian O'Donnell;Markus Rottmann;Karim Ullah;Rongxue Wu;Rishi Arora
  • 通讯作者:
    Rishi Arora

Cian O'Donnell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cian O'Donnell', 18)}}的其他基金

Computational prediction of vulnerable points and interventions for dysfunctional synaptic plasticity in neuropsychiatric disorders
神经精神疾病中脆弱点的计算预测和突触可塑性功能障碍的干预措施
  • 批准号:
    MR/S026630/2
  • 财政年份:
    2022
  • 资助金额:
    $ 46.98万
  • 项目类别:
    Research Grant
Computational prediction of vulnerable points and interventions for dysfunctional synaptic plasticity in neuropsychiatric disorders
神经精神疾病中脆弱点的计算预测和突触可塑性功能障碍的干预措施
  • 批准号:
    MR/S026630/1
  • 财政年份:
    2019
  • 资助金额:
    $ 46.98万
  • 项目类别:
    Research Grant

相似国自然基金

高性能纤维混凝土构件抗爆的强度预测
  • 批准号:
    51708391
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 46.98万
  • 项目类别:
Rehabilitation in Safety-Net Environments (RISE) for COPD
慢性阻塞性肺病安全网环境康复 (RISE)
  • 批准号:
    10346591
  • 财政年份:
    2022
  • 资助金额:
    $ 46.98万
  • 项目类别:
Carpometacarpal Osteoarthritis: Understanding the Intersection of Muscle Mechanics, Joint Instability, and Pain
腕掌骨关节炎:了解肌肉力学、关节不稳定和疼痛的交叉点
  • 批准号:
    10444241
  • 财政年份:
    2022
  • 资助金额:
    $ 46.98万
  • 项目类别:
Functional Decline in Low Functioning Older Adults; Role of iron dysregulation
功能低下的老年人的功能衰退;
  • 批准号:
    10689810
  • 财政年份:
    2022
  • 资助金额:
    $ 46.98万
  • 项目类别:
Carpometacarpal Osteoarthritis: Understanding the Intersection of Muscle Mechanics, Joint Instability, and Pain
腕掌骨关节炎:了解肌肉力学、关节不稳定和疼痛的交叉点
  • 批准号:
    10597142
  • 财政年份:
    2022
  • 资助金额:
    $ 46.98万
  • 项目类别:
The Use of Virtual Manipulations to Assess Fall Risk and the Mechanisms of Postural Instability that Occur with Age
使用虚拟操作评估跌倒风险以及随年龄增长而发生的姿势不稳定的机制
  • 批准号:
    10368105
  • 财政年份:
    2021
  • 资助金额:
    $ 46.98万
  • 项目类别:
Real time biofeedback Tai Chi training for knee osteoarthritis: A feasibility study
实时生物反馈太极拳训练治疗膝骨关节炎:可行性研究
  • 批准号:
    10374319
  • 财政年份:
    2018
  • 资助金额:
    $ 46.98万
  • 项目类别:
Real time biofeedback Tai Chi training for knee osteoarthritis: A feasibility study
实时生物反馈太极拳训练治疗膝骨关节炎:可行性研究
  • 批准号:
    9976459
  • 财政年份:
    2018
  • 资助金额:
    $ 46.98万
  • 项目类别:
Real time biofeedback Tai Chi training for knee osteoarthritis: A feasibility study
实时生物反馈太极拳训练治疗膝骨关节炎:可行性研究
  • 批准号:
    10468265
  • 财政年份:
    2018
  • 资助金额:
    $ 46.98万
  • 项目类别:
Real time biofeedback Tai Chi training for knee osteoarthritis: A feasibility study
实时生物反馈太极拳训练治疗膝骨关节炎:可行性研究
  • 批准号:
    9761465
  • 财政年份:
    2018
  • 资助金额:
    $ 46.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了