Computational prediction of vulnerable points and interventions for dysfunctional synaptic plasticity in neuropsychiatric disorders

神经精神疾病中脆弱点的计算预测和突触可塑性功能障碍的干预措施

基本信息

  • 批准号:
    MR/S026630/1
  • 负责人:
  • 金额:
    $ 56.06万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Neuropsychiatric disorders such as Autism Spectrum Disorder (ASD) and Schizophrenia are widespread, with around 1.7% of children in the United States diagnosed with ASD, and around 0.7% of people being diagnosed with Schizophrenia at some point in life. Mental health problems in general account for more than 20% of disabilities in the UK and are estimated to cost the economy between £70-100 billion per year. Current behavioural and pharmaceutical treatments for neuropsychiatric disorders are effective for only a subset of patients, often carry unwanted side-effects, and treatment success is difficult to predict from patient to patient. These shortcomings reflect the fact that almost all existing drug treatments were discovered by chance, rather than being designed based on an understanding of disorder mechanisms.However, a recent wave of discoveries of 70-100 genetic mutations linked to each of ASD and Schizophrenia has given promising clues to the origins of these disorders. Many of the genes code implicated are important for synapses - the connections between neurons that mediate learning and memory in the brain. This implies that many neuropsychiatric disorders may in fact be disorders of synaptic plasticity.Academic and corporate laboratory researchers worldwide are now trying to figure out what brain changes the discovered genetic mutations cause, typically by studying genetically altered mice that should ideally mimic the human patients. However, most neuroscience research methods are painstakingly difficult and low-throughput, so progress is slow. In this NIRG we will instead use data-driven computational simulations of neurons and synapses, because they work much faster, and let us perform detailed virtual experiments that researchers might like to do in the lab, but can't. The computer simulations will be based on data from the lab of our experimental collaborators within the University of Bristol. This project will shortlist a number of highly vulnerable components of synapses, that can be used to direct future wet lab experiments. Finally, I will use the results to develop a new theory of dysfunctional information transmission at synapses in neuropsychiatric disorders, that could guide broader research in the field.
自闭症谱系障碍(ASD)和精神分裂症等神经精神疾病很普遍,美国约有1.7%的儿童被诊断患有自闭症谱系障碍,约0.7%的人在生命的某个阶段被诊断患有精神分裂症。总体而言,心理健康问题占英国残疾人数的20%以上,据估计,每年造成的经济损失在700亿至1000亿英镑之间。目前针对神经精神疾病的行为和药物治疗仅对一小部分患者有效,而且往往会产生不必要的副作用,而且很难预测每个患者的治疗效果。这些缺点反映了这样一个事实,即几乎所有现有的药物治疗都是偶然发现的,而不是基于对疾病机制的理解而设计的。然而,最近发现的70-100个与自闭症谱系障碍和精神分裂症相关的基因突变为这些疾病的起源提供了有希望的线索。许多涉及的基因编码对突触很重要,突触是神经元之间的连接,在大脑中调节学习和记忆。这意味着许多神经精神疾病实际上可能是突触可塑性的障碍。目前,世界各地的学术和企业实验室研究人员正试图弄清楚,发现的基因突变导致的大脑变化是什么,通常是通过研究经过基因改造的老鼠来模拟人类患者。然而,大多数神经科学研究方法难度大、通量低,因此进展缓慢。在这个NIRG中,我们将使用数据驱动的神经元和突触的计算模拟,因为它们的工作速度要快得多,并让我们进行详细的虚拟实验,研究人员可能想在实验室里做,但不能。计算机模拟将基于我们在布里斯托尔大学的实验合作者实验室的数据。这个项目将列出一些突触的高度脆弱的成分,这些成分可以用来指导未来的湿实验室实验。最后,我将利用这些结果来发展神经精神疾病中突触功能障碍信息传递的新理论,这可以指导该领域更广泛的研究。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast-local and slow-global neural ensembles in the mouse brain.
  • DOI:
    10.1162/netn_a_00309
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Delaney, Thomas J.;O'Donnell, Cian
  • 通讯作者:
    O'Donnell, Cian
Bayesian analysis of phase data in EEG and MEG.
  • DOI:
    10.7554/elife.84602
  • 发表时间:
    2023-09-12
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Dimmock S;O'Donnell C;Houghton C
  • 通讯作者:
    Houghton C
Acetylcholine boosts dendritic NMDA spikes in a CA3 pyramidal neuron model
乙酰胆碱增强 CA3 锥体神经元模型中的树突状 NMDA 峰值
  • DOI:
    10.1101/2021.03.01.433406
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Humphries R
  • 通讯作者:
    Humphries R
Fast-local and slow-global neural ensembles in the mouse brain
小鼠大脑中的快速局部和慢速全局神经元集群
  • DOI:
    10.1101/2022.07.14.500088
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Delaney T
  • 通讯作者:
    Delaney T
Bayesian analysis of phase data in EEG and MEG
EEG 和 MEG 相位数据的贝叶斯分析
  • DOI:
    10.31234/osf.io/2vcsy
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dimmock S
  • 通讯作者:
    Dimmock S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cian O'Donnell其他文献

BrainSLAM: SLAM on Neural Population Activity Data
BrainSLAM:神经群体活动数据的 SLAM
  • DOI:
    10.48550/arxiv.2402.00588
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kipp Freud;Nathan Lepora;Matt W. Jones;Cian O'Donnell
  • 通讯作者:
    Cian O'Donnell
PO-05-015 REGION-SPECIFIC FREQUENCY DEPENDENT UPREGULATION OF SENESCENCE MARKERS IN THE LEFT ATRIUM IN A CHRONIC ATRIAL FIBRILLATION CANINE MODEL
PO-05-015 慢性心房颤动犬模型左心房衰老标志物的区域特异性频率依赖性上调
  • DOI:
    10.1016/j.hrthm.2025.03.1413
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Cian O'Donnell;Aleksei Mikhailov;Shin Yoo;Lauren Benson;Wenwei Zhang;David Johnson;William Marszalec;Markus Rottmann;Karim Ullah;Rongxue Wu;Rishi Arora;Asish Ghosh
  • 通讯作者:
    Asish Ghosh
PO-05-108 DISRUPTION OF MICROTUBULE NETWORK IS DEPENDENT ON FREQUENCY-DEPENDENT AND NOX2-GENERATED-ROS IN CANINE ATRIAL MYOCYTES
犬心房肌细胞中微管网络的破坏依赖于频率依赖性和由 NOX2 产生的活性氧簇
  • DOI:
    10.1016/j.hrthm.2025.03.1506
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Shin Yoo;William Marszalec;Wenwei Zhang;Asish Ghosh;Anna Pfenniger;Aleksei Mikhailov;Cian O'Donnell;Markus Rottmann;David Johnson;Lauren Benson;Jorge Otero Cure;Justin Ng;Karim Ullah;Rongxue Wu;John A. Wasserstrom;Rishi Arora
  • 通讯作者:
    Rishi Arora
PO-05-095 DIFFERENTIAL TEMPORAL DYNAMICS OF PARASYMPATHETIC AND SYMPATHETIC CARDIAC NERVE ACTIVITY AND ELECTROGRAM PATTERNS IN A CHRONIC ATRIAL FIBRILLATION CANINE MODEL
慢性心房颤动犬模型中副交感神经和交感神经心脏神经活动及心电图模式的差异时间动态
  • DOI:
    10.1016/j.hrthm.2025.03.1493
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Aleksei Mikhailov;Anna Pfenniger;Justin Ng;Lauren Benson;Ashita Bhatnagar;Amy Burrell;David Johnson;Wenwei Zhang;William Marszalec;Asish Ghosh;Shin Yoo;Cian O'Donnell;Markus Rottmann;Karim Ullah;Rongxue Wu;Rishi Arora
  • 通讯作者:
    Rishi Arora

Cian O'Donnell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cian O'Donnell', 18)}}的其他基金

Synaptic strength instability from stochastic gene expression in neurons
神经元随机基因表达导致的突触强度不稳定性
  • 批准号:
    BB/W001845/1
  • 财政年份:
    2022
  • 资助金额:
    $ 56.06万
  • 项目类别:
    Research Grant
Computational prediction of vulnerable points and interventions for dysfunctional synaptic plasticity in neuropsychiatric disorders
神经精神疾病中脆弱点的计算预测和突触可塑性功能障碍的干预措施
  • 批准号:
    MR/S026630/2
  • 财政年份:
    2022
  • 资助金额:
    $ 56.06万
  • 项目类别:
    Research Grant

相似国自然基金

基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
  • 批准号:
    82372016
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
高性能纤维混凝土构件抗爆的强度预测
  • 批准号:
    51708391
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
隧道超前探测的三分量光纤地震加速度检波机理与应用研究
  • 批准号:
    51079080
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
非编码RNA与蛋白质相互作用预测算法的研究
  • 批准号:
    31000586
  • 批准年份:
    2010
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Integrated exposome profiling to identify environmental risk factors of metabolic disease in mid- and late-life
综合暴露组分析可识别中晚年代谢疾病的环境危险因素
  • 批准号:
    10638457
  • 财政年份:
    2023
  • 资助金额:
    $ 56.06万
  • 项目类别:
Deep learning on ECGs to improve outcomes in patients on dialysis
心电图深度学习可改善透析患者的预后
  • 批准号:
    10734856
  • 财政年份:
    2023
  • 资助金额:
    $ 56.06万
  • 项目类别:
Artificial Intelligence to Predict Outcomes in Patients with Acute Kidney Injury on Continuous Renal Replacement Therapy
人工智能预测急性肾损伤患者连续肾脏替代治疗的结果
  • 批准号:
    10658576
  • 财政年份:
    2023
  • 资助金额:
    $ 56.06万
  • 项目类别:
Social Media Signals for reducing Perinatal Death by Suicide
减少围产期自杀死亡的社交媒体信号
  • 批准号:
    10575210
  • 财政年份:
    2023
  • 资助金额:
    $ 56.06万
  • 项目类别:
Fentanyl Addiction: Individual Differences, Neural Circuitry, and Treatment with a GLP-1 Receptor Agonist
芬太尼成瘾:个体差异、神经回路和 GLP-1 受体激动剂治疗
  • 批准号:
    10534864
  • 财政年份:
    2023
  • 资助金额:
    $ 56.06万
  • 项目类别:
Transforming Curiosity into Donation: Validating a Risk Prediction Index to Detect and Prevent Drop-Out in Potential Living Kidney Donors who are Racial/Ethnic Minorities
将好奇心转化为捐赠:验证风险预测指数,以检测和防止少数族裔潜在活体肾脏捐赠者的退出
  • 批准号:
    10730846
  • 财政年份:
    2023
  • 资助金额:
    $ 56.06万
  • 项目类别:
Salivary miRNAs as Prognostic Markers of Pulmonary Hypertension Associated with Bronchopulmonary Dysplasia in Extremely Low Gestational Age Infants
唾液 miRNA 作为极低胎龄婴儿支气管肺发育不良相关肺动脉高压的预后标志物
  • 批准号:
    10739639
  • 财政年份:
    2023
  • 资助金额:
    $ 56.06万
  • 项目类别:
Understanding the long-term effects of hurricanes on cardiovascular health and outcomes
了解飓风对心血管健康和结果的长期影响
  • 批准号:
    10591959
  • 财政年份:
    2023
  • 资助金额:
    $ 56.06万
  • 项目类别:
Integrative analysis for patient-centered outcomes and time-to-event data in Alzheimer's disease
阿尔茨海默病以患者为中心的结果和事件发生时间数据的综合分析
  • 批准号:
    10634872
  • 财政年份:
    2023
  • 资助金额:
    $ 56.06万
  • 项目类别:
Assessing the relationship between fungal pathogenicity and climate change and the risk of emergent pathogens in a changing climate
评估真菌致病性与气候变化之间的关系以及气候变化中新出现病原体的风险
  • 批准号:
    10712199
  • 财政年份:
    2023
  • 资助金额:
    $ 56.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了