Breaking the Cage: Transformative Time-resolved Crystallography using Fixed Targets at Synchrotrons and XFELs
打破牢笼:在同步加速器和 XFEL 上使用固定目标的变革性时间分辨晶体学
基本信息
- 批准号:BB/W001950/1
- 负责人:
- 金额:$ 56.85万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Efforts to understand how enzyme catalysis and protein-ligand binding work (or how they fail to work properly) is a vital research field in the life sciences. The knowledge gained has significance for the development of efficient biosynthetic materials, for applications in the biochemical, biotechnology and industrial sectors and in developing new medicines. Obtaining the structures of enzymes is an essential part of this effort. X-ray crystallography is a technique that reveals the individual atoms that make up an enzyme molecule, showing how they are joined to each other to form larger 3D structures. These structures and how they change over time as an enzyme performs its work are key factors for our understanding of enzyme function. This 'time-resolved' aspect is analogous to moving from a single photograph to a movie, and is tremendously powerful but also very challenging to achieve. To uncover this detailed 3D arrangement of atoms within an enzyme, powerful X-ray sources, called synchrotron storage rings and X-ray free electron lasers (XFELs), are used to visualise crystallised versions of the enzyme, using micron sized X-ray beams. The structure of the enzyme can then be deduced from the way that the X-rays are 'diffracted' as they pass through the crystal. The crystals that are grown in the laboratory for these experiments, including many important pharmaceutical targets for therapies, are very often only available as tiny, micron-sized (one-thousandth of a millimetre) 'microcrystals'. We will use silicon 'chips' for efficient delivery to the X-ray beam, for optimum high-throughput and high 'hit rate' (a 'hit' is when the micron size X-ray beam is diffracted by a microcrystal). A chip is a device containing thousands of shaped wells each of which can trap a microcrystal. Each chip can hold up to 25,600 microcrystals and each well, with its trapped microcrystal, is exposed in turn to the X-rays beam at the selected experimental facility used (the Diamond synchrotron in the UK or SACLA in Japan). The different facilities used have very different properties so can be used to provide complementary information by for example probing different timescales.The X-ray diffraction patterns gathered from all the microcrystal hits are combined and analysed to create a 3D model (structure) of the enzyme. Using chips for sample delivery we can obtain a complete 3D structure of an enzyme in less than one hour, which is a very efficient use of these expensive X-ray facilities. We will first study enzymes in their 'resting' states before they undergo catalysis (do their work), giving us the initial structures of the enzymes. We will use oxygen and nitric oxide and photocages to initiate catalysis or ligand binding in microcrystals. Photocages are compounds that contain a trapped molecule of interest, which is held securely and only released by a brief flash of a laser beam. By collecting diffraction patterns from the microcrystals at varying time delays after the laser flash we can capture time dependent changes and build up an accurate molecular movie of the enzyme in action. Crucially, we are able to produce these structures at room temperature, close to the conditions under which enzymes function in nature. This allows their dynamic movements related to their function to be followed much more accurately compared to the cryogenic conditions (liquid nitrogen temperature, approximately -173 oC) at which crystal structures are typically produced. Our approach allows us to follow reactions over a wide timescale from microseconds to seconds or minutes, building up a complete picture of catalysis.
努力了解酶催化和蛋白质配体结合是如何工作的(或者它们如何无法正常工作)是生命科学中的一个重要研究领域。所获得的知识对于开发高效的生物合成材料、在生化、生物技术和工业部门的应用以及在开发新药方面具有重要意义。获得酶的结构是这一努力的关键部分。X射线结晶学是一种揭示组成酶分子的单个原子的技术,表明它们是如何相互连接形成更大的3D结构的。这些结构以及它们在酶工作过程中如何随时间变化是我们理解酶功能的关键因素。这种“时间分辨”的特征类似于从一张照片转移到一部电影,这是非常强大的,但也是非常具有挑战性的。为了揭示酶中原子的这种详细的3D排列,被称为同步加速器存储环和X射线自由电子激光(XFELs)的强大X射线源被用来可视化酶的结晶版本,使用微米大小的X射线束。这种酶的结构可以从X射线穿过晶体时被“衍射”的方式推断出来。在实验室中生长的用于这些实验的晶体,包括许多用于治疗的重要药物靶标,往往只能作为微小的微米大小(千分之一毫米)的“微晶体”。我们将使用硅‘芯片’来高效地传输到X射线束,以获得最佳的高通量和高‘命中率’(‘命中’是指微米尺寸的X射线束被微晶体衍射)。芯片是一种包含数千个成形井的装置,每个成形井可以捕获一个微晶体。每个芯片可以容纳多达25,600个微晶体,每个井和它捕获的微晶体,在选定的实验设备(英国的钻石同步加速器或日本的SACLA)中依次暴露在X射线束下。所使用的不同设备具有非常不同的性质,因此可以用来提供补充信息,例如通过探测不同的时间尺度。从所有微晶点击中收集的X射线衍射图被组合并分析以创建酶的3D模型(结构)。使用芯片进行样品传输,我们可以在不到一个小时的时间内获得酶的完整3D结构,这是对这些昂贵的X射线设备的非常有效的利用。我们将首先研究酶在经历催化(进行工作)之前的“静止”状态,给我们酶的初始结构。我们将使用氧气、一氧化氮和光笼来启动微晶体中的催化或配体结合。光笼是一种含有被捕获的感兴趣分子的化合物,它被安全地持有,只有通过短暂的激光束闪光才能释放。通过收集激光闪光后不同时间延迟的微晶体的衍射图,我们可以捕捉到与时间相关的变化,并建立起酶作用的准确的分子电影。至关重要的是,我们能够在室温下产生这些结构,接近酶在自然界中发挥作用的条件。这使得与通常产生晶体结构的低温条件(液氮温度,约-173 oC)相比,可以更准确地跟踪它们与其功能相关的动态运动。我们的方法使我们能够在从微秒到几秒或几分钟的广泛时间范围内跟踪反应,建立起催化的完整图景。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Perspective: Structure determination of protein-ligand complexes at room temperature using X-ray diffraction approaches.
透视图:使用X射线衍射方法在室温下蛋白质配体复合物的结构测定。
- DOI:10.3389/fmolb.2023.1113762
- 发表时间:2023
- 期刊:
- 影响因子:5
- 作者:
- 通讯作者:
Serial femtosecond crystallography approaches to understanding catalysis in iron enzymes.
串行飞秒晶体学方法可了解铁酶的催化作用。
- DOI:10.1016/j.sbi.2022.102486
- 发表时间:2022
- 期刊:
- 影响因子:6.8
- 作者:Worrall JAR
- 通讯作者:Worrall JAR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Worrall其他文献
Jonathan Worrall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Worrall', 18)}}的其他基金
A holistic approach to reaction initiation at XFEL and synchrotron facilities
XFEL 和同步加速器设施反应引发的整体方法
- 批准号:
BB/X01844X/1 - 财政年份:2023
- 资助金额:
$ 56.85万 - 项目类别:
Research Grant
相似国自然基金
组织工程模式调控cage界面骨溶解机制及预防cage无菌性松动的意义探索
- 批准号:81272013
- 批准年份:2012
- 资助金额:70.0 万元
- 项目类别:面上项目
基于组织工程学策略介导的新型生物活性cage诱导椎间界面骨整合的作用机制及其意义探讨
- 批准号:81041061
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
人源抗CAGE单链抗体修饰rMETase隐形纳米粒靶向治疗胃癌的实验研究
- 批准号:30960442
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Metal-induced assembly of an artificial protein cage and their application for the cargo encapsulation
金属诱导的人工蛋白笼组装及其在货物封装中的应用
- 批准号:
22KJ2705 - 财政年份:2023
- 资助金额:
$ 56.85万 - 项目类别:
Grant-in-Aid for JSPS Fellows
A New Cage Wash for Laboratory Animal Resources at Iowa State
爱荷华州实验动物资源的新笼式清洗
- 批准号:
10737441 - 财政年份:2023
- 资助金额:
$ 56.85万 - 项目类别:
I-Corps: COVID Detection System Using a DNA Cage-Embedded Microfluidics Sensor
I-Corps:使用 DNA 笼嵌入式微流体传感器的新冠病毒检测系统
- 批准号:
2323237 - 财政年份:2023
- 资助金额:
$ 56.85万 - 项目类别:
Standard Grant
The study of cage occupancy and structural stability of rare gas hydrates by high-pressure single crystal x-ray diffraction measurements
高压单晶X射线衍射测量稀有气体水合物的笼占有率和结构稳定性研究
- 批准号:
23K03280 - 财政年份:2023
- 资助金额:
$ 56.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Metal-Organic Cage Complexes for use as Imaging Labels in Electron Microscopy
电子显微镜成像标签用金属有机笼配合物的设计与合成
- 批准号:
2905858 - 财政年份:2023
- 资助金额:
$ 56.85万 - 项目类别:
Studentship
CAS: Toward Molecular Control of Cage Escape Yields in Bimolecular Photochemistry
CAS:双分子光化学中笼逃逸率的分子控制
- 批准号:
2247589 - 财政年份:2023
- 资助金额:
$ 56.85万 - 项目类别:
Standard Grant
Modernization of the Pancoe Cage Wash Facility with a New Soiled Bedding Removal System
Pancoe 笼式清洗设施的现代化改造,配备新的脏垫料去除系统
- 批准号:
10733609 - 财政年份:2023
- 资助金额:
$ 56.85万 - 项目类别:
Smart ventilated cage systems for next-level experimental design and monitoring of specialized animal models.
智能通风笼系统,用于下一级实验设计和专门动物模型的监测。
- 批准号:
10737361 - 财政年份:2023
- 资助金额:
$ 56.85万 - 项目类别:
Modernization of Cage Washing Equipment for The Natural Science Center's Vivarium to Jointly Support Multi-Disciplinary Research and Georgia State University Sustainability Initiatives
自然科学中心动物园的笼子清洗设备现代化,共同支持多学科研究和佐治亚州立大学可持续发展计划
- 批准号:
10736234 - 财政年份:2023
- 资助金额:
$ 56.85万 - 项目类别:
Vivarium Modernization with Digital Ventilated Cages to Enhance Research Capacity and Reproducibility, and Provide Cage Environment Monitoring for Improved Operational Efficiency and Animal Welfare
采用数字通风笼进行现代化改造,以提高研究能力和再现性,并提供笼环境监测,以提高运营效率和动物福利
- 批准号:
10533591 - 财政年份:2022
- 资助金额:
$ 56.85万 - 项目类别: