Mechanistic and single molecule studies of biological systems using fluorescence-force and label-free hybrid imaging at the University of Edinburgh
爱丁堡大学使用荧光力和无标记混合成像对生物系统进行机理和单分子研究
基本信息
- 批准号:BB/W020238/1
- 负责人:
- 金额:$ 57万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The possibility of holding onto individual cells, microbes or even single proteins opens the road for a small-scale understanding and quantification of forces, torques and mechanics of vital processes such as cell division. Thanks to so-called "optical traps" (synonymous to tweezers we can now use light to grab and manipulate cells and biomolecules using a non-contact force. This revolutionary technology has proved essential in medical applications (eg. sperm manipulation and in vitro fertilization, tissue regeneration), biomedical research (eg. single molecule and single cell manipulation) and studying and engineering biomaterials (eg. hydrogels). Optical tweezers are not limited to what we can see using normal microscopes, can "feel" forces a billion time smaller than weighing an ant on your finger and perform measurements at a temporal resolution that is 100 times faster than you can blink. This unimaginable "super-resolved" information is therefore able to yield unique information on the behavior of single molecules and reveal how they work. This proposal requests funds to purchase the first optical tweezers with fluorescence and label-free microscope in Scotland, to be hosted in the School of Biological Sciences at the University of Edinburgh. This will enable us to: 1) manipulate single cells, bacteria, biomolecules and even viruses;2) measure forces generated during the interaction of, and reactions between, these entities; 3) understand their dynamic and mechanical properties in real time with high spatial resolution. This instrument perfectly sits at the interface between engineering, physical and biological sciences and will allow many groups working on a great diversity of projects to address outstanding questions in their field of research.The optical tweezers with fluorescence/label-free microscope will be housed in a state-of-the-art facility called the Centre Optical Imaging Laboratory (COIL) and will be made available to the wider community of researchers in Edinburgh and Scotland. Researchers at the University of Edinburgh will use this instrument across a broad range of projects such as cell division, cellular transport and organization, bacteria swimming, strength of bacteria biofilms, material properties of DNA hydrogels, formation and stability of proteins and protein condensates that are relevant for cell regeneration and neurodegenerative diseases, folding/unfolding of DNA origami, chromatin organization, genome editing and off-target CRISPR mutations, and others. The acquisition of this technology represents a major step forward as it is currently not available anywhere in Scotland but the demand is increasing rapidly and attracts interest from researchers in diverse fields across STEM. Beyond the academic interest, this instrument will also be used to study industrial and societal problems, such as the interaction between bacteria in water purification systems. Optical tweezers with fluorescence and label-free technology is thus an unparalleled opportunity to advance imaging in Scotland and also in the whole of the UK, where only other 3 similar instruments exist. The outstanding track record of biomolecular research across the various schools in College of Science and Engineering and the expertise in imaging focused in the Edinburgh Super-Resolution Imaging Consortium (ESRIC) and Centre for Optical characteriSation, control and iMagIng of Complex materials (COSMIC) makes Edinburgh University the ideal place where to host it.
保持单个细胞、微生物甚至单一蛋白质的可能性,为小规模理解和量化细胞分裂等重要过程的力、力矩和力学机制开辟了道路。多亏了所谓的“光学陷阱”(也就是镊子的同义词),我们现在可以使用光来抓住细胞和生物分子,并使用非接触力来操纵它们。这项革命性的技术已被证明在医疗应用中是必不可少的(例如。精子操作和体外受精、组织再生)、生物医学研究(例如。单分子和单细胞操作)以及研究和工程生物材料(例如,水凝胶)。光学镊子并不局限于我们用普通显微镜可以看到的东西,它可以感觉到比手指上称一只蚂蚁小10亿倍的力,并以比你眨眼快100倍的时间分辨率进行测量。因此,这种难以想象的“超分辨”信息能够产生关于单分子行为的独特信息,并揭示它们是如何工作的。这项提案要求提供资金,以购买苏格兰第一台带有荧光和无标签显微镜的光学镊子,由爱丁堡大学生物科学学院主办。这将使我们能够:1)操纵单个细胞、细菌、生物分子甚至病毒;2)测量这些实体之间相互作用和反应时产生的力;3)以高空间分辨率实时了解它们的动态和力学性质。这台仪器完美地位于工程学、物理学和生物科学之间的交界处,将允许许多致力于各种项目的小组解决他们研究领域的悬而未决的问题。带有荧光/无标签显微镜的光学镊子将被安置在一个名为中心光学成像实验室(COIL)的最先进的设施中,并将向爱丁堡和苏格兰的更广泛的研究人员社区提供。爱丁堡大学的研究人员将在广泛的项目中使用该仪器,如细胞分裂、细胞运输和组织、细菌游泳、细菌生物膜的强度、DNA水凝胶的材料特性、与细胞再生和神经退行性疾病相关的蛋白质和蛋白质凝聚体的形成和稳定性、DNA折纸的折叠/展开、染色质组织、基因组编辑和非靶标CRISPR突变等。这项技术的获得代表着向前迈出的一大步,因为目前苏格兰任何地方都无法获得这项技术,但需求正在迅速增长,并吸引了STEM各个领域的研究人员的兴趣。除了学术兴趣,该仪器还将用于研究工业和社会问题,如净水系统中细菌之间的相互作用。因此,具有荧光和无标签技术的光学镊子是在苏格兰和整个英国推进成像技术的无与伦比的机会,在英国,只有其他3种类似的仪器存在。科学和工程学院各学院在生物分子研究方面的杰出记录,以及爱丁堡超分辨率成像联盟(ESRIC)和复杂材料光学表征、控制和成像中心(COSMIC)在成像方面的专业知识,使爱丁堡大学成为举办该会议的理想地点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julie Welburn其他文献
Molecular-Mechanical Model of Kinetochore-Microtubule Interactions Identifies Flexibility of the Kinetochore Mesh as a Key Determinant of Errorless Bi-Orientation
- DOI:
10.1016/j.bpj.2010.12.1074 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Fazly Ataullakhanov;Anatoly Zaytsev;Julie Welburn;Iain Cheeseman;Ekaterina Grishchuk - 通讯作者:
Ekaterina Grishchuk
Julie Welburn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julie Welburn', 18)}}的其他基金
The role for tubulin isotype diversity
微管蛋白同种型多样性的作用
- 批准号:
BB/Y00485X/1 - 财政年份:2024
- 资助金额:
$ 57万 - 项目类别:
Research Grant
相似国自然基金
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
活细胞单分子成像定量研究EGFR内吞途径命运选择
- 批准号:32000557
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高效率单细胞分析微流控芯片的机理研究
- 批准号:31970754
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
- 批准号:31900571
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
酵母RNase MRP的结构及催化机制研究
- 批准号:31900929
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
单细胞RNA和ATAC测序解析肌肉干细胞激活和增殖中的异质性研究
- 批准号:31900570
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
亚纳米单分子定位技术研究化学修饰对蛋白-膜相互作用的干预
- 批准号:91753104
- 批准年份:2017
- 资助金额:70.0 万元
- 项目类别:重大研究计划
基于Single Cell RNA-seq的斑马鱼神经干细胞不对称分裂调控机制研究
- 批准号:31601181
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
甲醇合成汽油工艺中烯烃催化聚合过程的单元步骤(single event)微动力学理论研究
- 批准号:21306143
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于CSSSLs的水稻粒形QTL qGS7-2的图位克隆和功能分析
- 批准号:31101131
- 批准年份:2011
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanistic insights into multifaceted roles of coronavirus exoribonuclease complex
冠状病毒外核糖核酸酶复合物多方面作用的机制见解
- 批准号:
10713523 - 财政年份:2023
- 资助金额:
$ 57万 - 项目类别:
Functional and mechanistic delineation of HuR-Wisp1 signaling on myofibroblast activity
HuR-Wisp1信号对肌成纤维细胞活性的功能和机制描述
- 批准号:
10736289 - 财政年份:2023
- 资助金额:
$ 57万 - 项目类别:
Mechanistic analysis of TDP-43-mediated RNA localization in neurons and its misregulation in ALS
TDP-43介导的神经元RNA定位及其在ALS中的错误调节的机制分析
- 批准号:
10659532 - 财政年份:2023
- 资助金额:
$ 57万 - 项目类别:
Mechanistic analysis of DNA helicases using nanopore-based single molecule assays
使用基于纳米孔的单分子测定法对 DNA 解旋酶进行机理分析
- 批准号:
2885493 - 财政年份:2023
- 资助金额:
$ 57万 - 项目类别:
Studentship
LUMICKS C-trap for Mechanistic Studies of Biological Systems at the University of Rochester
罗切斯特大学用于生物系统机械研究的 LUMICKS C-trap
- 批准号:
10435816 - 财政年份:2022
- 资助金额:
$ 57万 - 项目类别:
Mechanistic models for predicting the dynamics of microbial communities
预测微生物群落动态的机制模型
- 批准号:
10490833 - 财政年份:2022
- 资助金额:
$ 57万 - 项目类别:
Mechanistic Studies of cytosolic double-stranded DNA sensing pathways.
胞质双链 DNA 传感途径的机制研究。
- 批准号:
10689702 - 财政年份:2022
- 资助金额:
$ 57万 - 项目类别:
Mechanistic Studies of cytosolic double-stranded DNA sensing pathways.
胞质双链 DNA 传感途径的机制研究。
- 批准号:
10406454 - 财政年份:2022
- 资助金额:
$ 57万 - 项目类别:
NSF-ANR: Detailed and Mechanistic Characterization of TAD Boundaries Using Complementary Single-Molecule Sequencing and Super-Resolution Imaging Approaches
NSF-ANR:使用互补单分子测序和超分辨率成像方法对 TAD 边界进行详细和机械表征
- 批准号:
2207050 - 财政年份:2022
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
Mechanistic Basis of Calcium Sensing Receptor Signaling
钙传感受体信号传导的机制基础
- 批准号:
10467554 - 财政年份:2022
- 资助金额:
$ 57万 - 项目类别:














{{item.name}}会员




