Mechanistic and single molecule studies of biological systems using fluorescence-force and label-free hybrid imaging at the University of Edinburgh

爱丁堡大学使用荧光力和无标记混合成像对生物系统进行机理和单分子研究

基本信息

  • 批准号:
    BB/W020238/1
  • 负责人:
  • 金额:
    $ 57万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

The possibility of holding onto individual cells, microbes or even single proteins opens the road for a small-scale understanding and quantification of forces, torques and mechanics of vital processes such as cell division. Thanks to so-called "optical traps" (synonymous to tweezers we can now use light to grab and manipulate cells and biomolecules using a non-contact force. This revolutionary technology has proved essential in medical applications (eg. sperm manipulation and in vitro fertilization, tissue regeneration), biomedical research (eg. single molecule and single cell manipulation) and studying and engineering biomaterials (eg. hydrogels). Optical tweezers are not limited to what we can see using normal microscopes, can "feel" forces a billion time smaller than weighing an ant on your finger and perform measurements at a temporal resolution that is 100 times faster than you can blink. This unimaginable "super-resolved" information is therefore able to yield unique information on the behavior of single molecules and reveal how they work. This proposal requests funds to purchase the first optical tweezers with fluorescence and label-free microscope in Scotland, to be hosted in the School of Biological Sciences at the University of Edinburgh. This will enable us to: 1) manipulate single cells, bacteria, biomolecules and even viruses;2) measure forces generated during the interaction of, and reactions between, these entities; 3) understand their dynamic and mechanical properties in real time with high spatial resolution. This instrument perfectly sits at the interface between engineering, physical and biological sciences and will allow many groups working on a great diversity of projects to address outstanding questions in their field of research.The optical tweezers with fluorescence/label-free microscope will be housed in a state-of-the-art facility called the Centre Optical Imaging Laboratory (COIL) and will be made available to the wider community of researchers in Edinburgh and Scotland. Researchers at the University of Edinburgh will use this instrument across a broad range of projects such as cell division, cellular transport and organization, bacteria swimming, strength of bacteria biofilms, material properties of DNA hydrogels, formation and stability of proteins and protein condensates that are relevant for cell regeneration and neurodegenerative diseases, folding/unfolding of DNA origami, chromatin organization, genome editing and off-target CRISPR mutations, and others. The acquisition of this technology represents a major step forward as it is currently not available anywhere in Scotland but the demand is increasing rapidly and attracts interest from researchers in diverse fields across STEM. Beyond the academic interest, this instrument will also be used to study industrial and societal problems, such as the interaction between bacteria in water purification systems. Optical tweezers with fluorescence and label-free technology is thus an unparalleled opportunity to advance imaging in Scotland and also in the whole of the UK, where only other 3 similar instruments exist. The outstanding track record of biomolecular research across the various schools in College of Science and Engineering and the expertise in imaging focused in the Edinburgh Super-Resolution Imaging Consortium (ESRIC) and Centre for Optical characteriSation, control and iMagIng of Complex materials (COSMIC) makes Edinburgh University the ideal place where to host it.
对单个细胞、微生物甚至单个蛋白质的控制,为小规模地理解和量化诸如细胞分裂等重要过程的力、扭矩和力学开辟了道路。多亏了所谓的“光学陷阱”(与镊子同义),我们现在可以利用光来利用非接触力抓取和操纵细胞和生物分子。这项革命性的技术已被证明在医学应用中是必不可少的。精子操纵和体外受精,组织再生),生物医学研究(如:单分子和单细胞操作),研究和工程生物材料(如:水凝胶)。光学镊子并不局限于我们用普通显微镜所能看到的东西,它能“感受到”比手指上一只蚂蚁的重量小10亿倍的力,并能以比你眨眼快100倍的时间分辨率进行测量。因此,这种难以想象的“超分辨率”信息能够产生关于单个分子行为的独特信息,并揭示它们是如何工作的。该提案要求资金用于购买苏格兰第一个荧光和无标签显微镜光学镊子,将在爱丁堡大学生物科学学院主持。这将使我们能够:1)操纵单细胞、细菌、生物分子甚至病毒;2)测量这些实体相互作用和相互反应过程中产生的力;3)以高空间分辨率实时了解其动态力学特性。该仪器完美地位于工程、物理和生物科学之间的界面,将允许许多从事各种项目的小组解决其研究领域的突出问题。带有荧光/无标签显微镜的光学镊子将被安置在称为中心光学成像实验室(COIL)的最先进的设施中,并将提供给爱丁堡和苏格兰的更广泛的研究人员。爱丁堡大学的研究人员将在广泛的项目中使用该仪器,如细胞分裂、细胞运输和组织、细菌游泳、细菌生物膜的强度、DNA水凝胶的材料特性、与细胞再生和神经退行性疾病相关的蛋白质和蛋白质凝聚物的形成和稳定性、DNA折纸的折叠/展开、染色质组织、基因组编辑和脱靶CRISPR突变等。这项技术的收购是向前迈出的重要一步,因为目前在苏格兰的任何地方都无法获得这项技术,但需求正在迅速增长,并吸引了STEM各个领域的研究人员的兴趣。除了学术兴趣之外,该仪器还将用于研究工业和社会问题,例如水净化系统中细菌之间的相互作用。因此,具有荧光和无标签技术的光学镊子在苏格兰和整个英国都是一个无与伦比的机会,在那里只有其他3种类似的仪器存在。科学与工程学院各学院在生物分子研究方面的杰出记录,以及爱丁堡超分辨率成像联盟(ESRIC)和复杂材料光学表征、控制和成像中心(COSMIC)在成像方面的专业知识,使爱丁堡大学成为举办该项目的理想场所。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julie Welburn其他文献

Molecular-Mechanical Model of Kinetochore-Microtubule Interactions Identifies Flexibility of the Kinetochore Mesh as a Key Determinant of Errorless Bi-Orientation
  • DOI:
    10.1016/j.bpj.2010.12.1074
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Fazly Ataullakhanov;Anatoly Zaytsev;Julie Welburn;Iain Cheeseman;Ekaterina Grishchuk
  • 通讯作者:
    Ekaterina Grishchuk

Julie Welburn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Julie Welburn', 18)}}的其他基金

The role for tubulin isotype diversity
微管蛋白同种型多样性的作用
  • 批准号:
    BB/Y00485X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57万
  • 项目类别:
    Research Grant

相似国自然基金

含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
活细胞单分子成像定量研究EGFR内吞途径命运选择
  • 批准号:
    32000557
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高效率单细胞分析微流控芯片的机理研究
  • 批准号:
    31970754
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
  • 批准号:
    31900571
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
酵母RNase MRP的结构及催化机制研究
  • 批准号:
    31900929
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
单细胞RNA和ATAC测序解析肌肉干细胞激活和增殖中的异质性研究
  • 批准号:
    31900570
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
亚纳米单分子定位技术研究化学修饰对蛋白-膜相互作用的干预
  • 批准号:
    91753104
  • 批准年份:
    2017
  • 资助金额:
    70.0 万元
  • 项目类别:
    重大研究计划
基于Single Cell RNA-seq的斑马鱼神经干细胞不对称分裂调控机制研究
  • 批准号:
    31601181
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
甲醇合成汽油工艺中烯烃催化聚合过程的单元步骤(single event)微动力学理论研究
  • 批准号:
    21306143
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于CSSSLs的水稻粒形QTL qGS7-2的图位克隆和功能分析
  • 批准号:
    31101131
  • 批准年份:
    2011
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mechanistic insights into multifaceted roles of coronavirus exoribonuclease complex
冠状病毒外核糖核酸酶复合物多方面作用的机制见解
  • 批准号:
    10713523
  • 财政年份:
    2023
  • 资助金额:
    $ 57万
  • 项目类别:
Functional and mechanistic delineation of HuR-Wisp1 signaling on myofibroblast activity
HuR-Wisp1信号对肌成纤维细胞活性的功能和机制描述
  • 批准号:
    10736289
  • 财政年份:
    2023
  • 资助金额:
    $ 57万
  • 项目类别:
Mechanistic analysis of TDP-43-mediated RNA localization in neurons and its misregulation in ALS
TDP-43介导的神经元RNA定位及其在ALS中的错误调节的机制分析
  • 批准号:
    10659532
  • 财政年份:
    2023
  • 资助金额:
    $ 57万
  • 项目类别:
Mechanistic analysis of DNA helicases using nanopore-based single molecule assays
使用基于纳米孔的单分子测定法对 DNA 解旋酶进行机理分析
  • 批准号:
    2885493
  • 财政年份:
    2023
  • 资助金额:
    $ 57万
  • 项目类别:
    Studentship
LUMICKS C-trap for Mechanistic Studies of Biological Systems at the University of Rochester
罗切斯特大学用于生物系统机械研究的 LUMICKS C-trap
  • 批准号:
    10435816
  • 财政年份:
    2022
  • 资助金额:
    $ 57万
  • 项目类别:
Mechanistic models for predicting the dynamics of microbial communities
预测微生物群落动态的机制模型
  • 批准号:
    10490833
  • 财政年份:
    2022
  • 资助金额:
    $ 57万
  • 项目类别:
Mechanistic Studies of cytosolic double-stranded DNA sensing pathways.
胞质双链 DNA 传感途径的机制研究。
  • 批准号:
    10406454
  • 财政年份:
    2022
  • 资助金额:
    $ 57万
  • 项目类别:
Mechanistic Studies of cytosolic double-stranded DNA sensing pathways.
胞质双链 DNA 传感途径的机制研究。
  • 批准号:
    10689702
  • 财政年份:
    2022
  • 资助金额:
    $ 57万
  • 项目类别:
NSF-ANR: Detailed and Mechanistic Characterization of TAD Boundaries Using Complementary Single-Molecule Sequencing and Super-Resolution Imaging Approaches
NSF-ANR:使用互补单分子测序和超分辨率成像方法对 TAD 边界进行详细和机械表征
  • 批准号:
    2207050
  • 财政年份:
    2022
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Mechanistic Basis of Calcium Sensing Receptor Signaling
钙传感受体信号传导的机制基础
  • 批准号:
    10467554
  • 财政年份:
    2022
  • 资助金额:
    $ 57万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了