Genome synthesis of a universal synthetic host for antimicrobial drug production - towards the first deep-engineering of an actinobacterial genome
用于抗菌药物生产的通用合成宿主的基因组合成——迈向放线菌基因组的首次深度工程
基本信息
- 批准号:BB/X012573/1
- 负责人:
- 金额:$ 19.34万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Antimicrobial resistance is an urgent problem that needs to be tackled by discovering new antimicrobial drugs. Genome sequencing has shown that microbial genomes encode the capability to produce an enormous variety of different chemical compounds, including thousands of potential antimicrobials. However, only a tiny fraction of these is currently being clinically used and the vast majority remains uncharacterised. A major bottleneck is the fact that the genetic machinery for compound production tends to be inactive under normal conditions - discovering and characterising antimicrobial leads usually requires their transfer to a heterologous host species. However, typical host candidates are limited in their ability to produce novel chemicals using the transferred genetic machinery from unrelated organisms. In this project we will overcome this barrier using the powers of synthetic genomics. We will explore the common design features of the genomes of a particularly talented group of antimicrobial producers, in the class Actinobacteria, which have evolved a highly flexible metabolism pre-adapted to the production of high levels of a wide variety of compounds using horizontally acquired biosynthetic machinery. We will use this information and insights from earlier attempts to engineer antimicrobial high-production strains, to design a universal antibacterial host genome, which we will synthesise using an innovative combination of de-novo and template-based strategies, exploiting emerging genome synthesis techniques and advances in workflow automation. Creating an actinobacterial-derived universal synthetic host genome, which can produce a broad range of new chemicals compounds in a flexible, modular plug-and-play manner, will greatly expand our ability to access the antimicrobial treasures revealed by genome sequences. It will also facilitate the subsequent steps of compound modification and diversification using combinatorial approaches to create libraries of biosynthetic pathway variants. At the same time, the project work will greatly enhance the synthetic genomics capabilities in both host countries. Genome synthesis is still immature in many senses including expensive, labour-intensive, and not sufficiently automated. Here, we bring together complementary expertise to establish an innovative genome synthesis workflow suitable for tackling the major technical challenges of creating synthetic actinobacterial genomes.These aims will be realised together by the strongly complementary teams of researchers from the University of Manchester and the Tokyo Institute of Technology and Nagoya University, in the UK and Japan, respectively. Together, our teams have expertise in the use of emerging technology in computational analysis (for redesigning the genome for synthesis), artificial intelligence/machine learning (to turn data into genome design strategies), automation (for creating synthetic genomes and DNA constructs), natural product research (to determine how the antimicrobials are produced and modified), microfluidics (for the rapid synthesis of genome parts in tiny volumes), and DNA chemistry (for designing new chemical reactions of DNA synthesis). Close interactions of all team members will be enabled by exchange visits to both the UK and Japan, during the project, as well as by organising an international symposium to bring together the natural products and engineering biology community.Early career researchers and technicians are important members of our teams and will actively participate to the project, which will allow them to gain international experience and independence, while acquiring novel technical skills through the intense exchange visits.
抗生素耐药性是一个迫切需要通过发现新的抗菌药物来解决的问题。基因组测序表明,微生物基因组编码产生大量不同化合物的能力,包括数千种潜在的抗菌剂。然而,这些药物中只有一小部分目前正在临床上使用,绝大多数仍然没有特征。一个主要的瓶颈是这样的事实,即用于化合物生产的遗传机制在正常条件下往往是不活跃的-发现和表征抗微生物先导物通常需要将它们转移到异源宿主物种。然而,典型的宿主候选者在使用来自无关生物的转移的遗传机制产生新的化学物质的能力方面是有限的。在这个项目中,我们将利用合成基因组学的力量克服这一障碍。我们将探讨一个特别有才华的组的抗菌生产者的基因组的共同设计特征,在类放线菌,这已经演变成一个高度灵活的代谢预适应生产高水平的各种各样的化合物使用水平获得的生物合成机器。我们将利用这些信息和早期尝试的见解来设计抗微生物高产菌株,设计一个通用的抗微生物宿主基因组,我们将使用从头和基于模板的策略的创新组合来合成,利用新兴的基因组合成技术和工作流程自动化的进步。创建一个放线菌衍生的通用合成宿主基因组,它可以以灵活的,模块化的即插即用方式产生广泛的新化学化合物,将大大扩展我们获得基因组序列揭示的抗菌宝藏的能力。它还将促进使用组合方法的化合物修饰和多样化的后续步骤,以创建生物合成途径变体的文库。与此同时,该项目工作将大大提高两个东道国的合成基因组学能力。基因组合成在许多方面仍然不成熟,包括昂贵,劳动密集型和不够自动化。在这里,我们汇集了互补的专业知识,建立了一个创新的基因组合成工作流程,适用于解决创建合成放线菌基因组的主要技术挑战。这些目标将由曼彻斯特大学和东京工业大学以及名古屋大学的研究人员组成的强大互补团队共同实现。我们的团队共同拥有在计算分析中使用新兴技术的专业知识(用于重新设计基因组进行合成),人工智能/机器学习(将数据转化为基因组设计策略),自动化(用于创建合成基因组和DNA结构),天然产物研究(确定抗菌剂是如何产生和修饰的),微流体(用于以微小体积快速合成基因组部分)和DNA化学(用于设计DNA合成的新化学反应)。在项目期间,所有团队成员将通过对英国和日本的互访,以及组织一次国际研讨会,将天然产物和工程生物学界聚集在一起,从而实现密切的互动。早期职业研究人员和技术人员是我们团队的重要成员,他们将积极参与项目,这将使他们获得国际经验和独立性,同时通过密集的互访获得新的技术技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eriko Takano其他文献
Synthetic Biology of Natural Products Engineering: Recent Advances Across the Discover–Design–Build–Test–Learn Cycle
天然产物工程的合成生物学:从发现到设计、构建、测试、学习循环的最新进展
- DOI:
10.1021/acssynbio.4c00391 - 发表时间:
2024-09-20 - 期刊:
- 影响因子:3.900
- 作者:
Jonathan Foldi;Jack A. Connolly;Eriko Takano;Rainer Breitling - 通讯作者:
Rainer Breitling
Exploring the versatility of fatty acid biosynthesis in emEscherichia coli/em: Production of random methyl branched fatty acids
探索大肠杆菌中脂肪酸生物合成的多功能性:随机甲基支链脂肪酸的生产
- DOI:
10.1016/j.ymben.2025.03.005 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:6.800
- 作者:
Fernando Bracalente;Matías Tripaldi;Virginia Galván;Yi-Ting Tsai;Eriko Takano;Silvia Altabe;Hugo Gramajo;Ana Arabolaza - 通讯作者:
Ana Arabolaza
Biotechnological application of emStreptomyces/em for the production of clinical drugs and other bioactive molecules
链霉菌在生物技术上用于生产临床药物和其他生物活性分子的应用
- DOI:
10.1016/j.copbio.2022.102762 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:7.000
- 作者:
Francesco Del Carratore;Erik KR Hanko;Rainer Breitling;Eriko Takano - 通讯作者:
Eriko Takano
The tuf3 gene of Streptomyces coelicolor A3(2) encodes an inessential elongation factor Tu that is apparently subject to positive stringent control.
天蓝色链霉菌 A3(2) 的 tuf3 基因编码一个无关紧要的延伸因子 Tu,该因子显然受到正严格控制。
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:1.5
- 作者:
G. P. V. Wezel;Eriko Takano;E. Vijgenboom;Leendert Bosch;M. Bibb - 通讯作者:
M. Bibb
Computational tools for the synthetic design of biochemical pathways
用于生物化学途径合成设计的计算工具
- DOI:
10.1038/nrmicro2717 - 发表时间:
2012-01-23 - 期刊:
- 影响因子:103.300
- 作者:
Marnix H. Medema;Renske van Raaphorst;Eriko Takano;Rainer Breitling - 通讯作者:
Rainer Breitling
Eriko Takano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eriko Takano', 18)}}的其他基金
Synthetic biology Pipeline for the Investigation of Novel Spidroins (SPINS)
新型蜘蛛蛋白研究的合成生物学管道 (SPINS)
- 批准号:
EP/X015408/1 - 财政年份:2023
- 资助金额:
$ 19.34万 - 项目类别:
Research Grant
Reverse engineering the soil microbiome: detecting, modeling, and optimizing signal impacts on microbiome metabolic functions
对土壤微生物组进行逆向工程:检测、建模和优化信号对微生物组代谢功能的影响
- 批准号:
NE/T010959/1 - 财政年份:2020
- 资助金额:
$ 19.34万 - 项目类别:
Research Grant
Japan Partnering Award: Application of MS-Imaging and Metabolomics in Synthetic Biology Based Strain Improvement of Industrially Important Microbes
日本合作奖:MS 成像和代谢组学在基于合成生物学的工业重要微生物菌株改良中的应用
- 批准号:
BB/N021975/1 - 财政年份:2016
- 资助金额:
$ 19.34万 - 项目类别:
Research Grant
13 ERA IB TERPENOSOME: Engineered compartments for monoterpenoid production using synthetic biology
13 ERA IB TERPENOSOME:利用合成生物学进行单萜生产的工程隔室
- 批准号:
BB/L027593/1 - 财政年份:2014
- 资助金额:
$ 19.34万 - 项目类别:
Research Grant
13TSB_TIBio: Synthetic Biology for antibiotic discovery and development
13TSB_TIBio:抗生素发现和开发的合成生物学
- 批准号:
BB/M004910/1 - 财政年份:2014
- 资助金额:
$ 19.34万 - 项目类别:
Research Grant
相似国自然基金
胆固醇合成蛋白CYP51介导线粒体通透性转换诱发Th17/Treg细胞稳态失衡在舍格伦综合征中的作用机制研究
- 批准号:82370976
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
“肠—肝轴”PPARα/CYP8B1胆汁酸合成信号通路在减重手术改善糖脂代谢中的作用与机制
- 批准号:82370902
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
lncGEI诱导湖羊卵巢颗粒细胞E2合成的分子机制
- 批准号:32372856
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
脂肪酸合成通过GDF15/IRS2介导胰岛素抵抗促进血管内皮细胞活化导致脓毒症肺损伤的机制研究
- 批准号:82372203
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
环状RNA circ-PRKAA1调控肝癌细胞脂代谢重编程的研究
- 批准号:32000527
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
ALDH6A1缺损重塑糖脂代谢促进肝细胞癌发生的机制研究
- 批准号:91957109
- 批准年份:2019
- 资助金额:79.0 万元
- 项目类别:重大研究计划
新型滤波器综合技术-直接综合技术(Direct synthesis Technique)的研究及应用
- 批准号:61671111
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
双硅化合物反应及天然产物合成应用研究
- 批准号:21172150
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
新型M4受体选择性拮抗剂的研究
- 批准号:30973615
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
基于penicillide结构的类天然产物合成及其胆固醇酯转运蛋白抑制的研究
- 批准号:20872019
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
A universal approach for determining three-dimensional RNA structures
确定三维 RNA 结构的通用方法
- 批准号:
10724848 - 财政年份:2023
- 资助金额:
$ 19.34万 - 项目类别:
Development of GenomeBuild as a Universal Method to Synthesize Genomes
GenomeBuild 的开发作为合成基因组的通用方法
- 批准号:
10565058 - 财政年份:2023
- 资助金额:
$ 19.34万 - 项目类别:
Technology to Create Spiegel ERAbodies on Demand: Biostable Universal Antibody Replacements
按需创建 Spiegel ERAbodies 的技术:生物稳定的通用抗体替代品
- 批准号:
10510985 - 财政年份:2022
- 资助金额:
$ 19.34万 - 项目类别:
Discovery & Synthesis Chemputer: An intelligent universal system for automated chemical synthesis and discovery across different hardware and scales
发现
- 批准号:
10446751 - 财政年份:2022
- 资助金额:
$ 19.34万 - 项目类别:
Discovery & Synthesis Chemputer: An intelligent universal system for automated chemical synthesis and discovery across different hardware and scales
发现
- 批准号:
10632021 - 财政年份:2022
- 资助金额:
$ 19.34万 - 项目类别:
Technology to Create Spiegel ERAbodies on Demand: Biostable Universal Antibody Replacements
按需创建 Spiegel ERAbodies 的技术:生物稳定的通用抗体替代品
- 批准号:
10707168 - 财政年份:2022
- 资助金额:
$ 19.34万 - 项目类别:
Discovery & Synthesis Chemputer: An intelligent universal system for automated chemical synthesis and discovery across different hardware and scales
发现
- 批准号:
10905022 - 财政年份:2022
- 资助金额:
$ 19.34万 - 项目类别:
A universal droplet microfluidic platform for ultrahigh-throughput biocatalyst evolution
用于超高通量生物催化剂进化的通用液滴微流控平台
- 批准号:
10547670 - 财政年份:2021
- 资助金额:
$ 19.34万 - 项目类别:
A universal droplet microfluidic platform for ultrahigh-throughput biocatalyst evolution
用于超高通量生物催化剂进化的通用液滴微流控平台
- 批准号:
10705725 - 财政年份:2021
- 资助金额:
$ 19.34万 - 项目类别:
A universal palladium precatalyst for efficient chemical synthesis of molecules and materials
用于高效化学合成分子和材料的通用钯预催化剂
- 批准号:
561560-2021 - 财政年份:2021
- 资助金额:
$ 19.34万 - 项目类别:
Idea to Innovation