STRUCTURE-FUNCTION STUDIES OF GAP JUNCTIONS

间隙连接的结构功能研究

基本信息

项目摘要

The mechanisms underlying gating of ion channels are not yet fully understood. The application of molecular genetic and biophysical techniques should lead to the description of the properties, organization and primary sequence of the protein domains that are responsible for the voltage dependence of gap junctions. The regulation of intercellular communication by voltage dependent gap junctions has been postulated to play a role in development, neural signalling and integration, and control of secretion. In vertebrates, gap junction proteins are known to be encoded by a small gene family that shares no extensive sequence homology with other ion channels. Several gap junction proteins (connexins) for which cloned DNA are available have been shown to form channels with different voltage sensitivities and kinetics, but the divergence in their primary protein sequence is sufficient to prevent the identification of regions that are required for the expression of voltage dependence. We will focus our initial investigations on two vertebrate connexins Cx26 and Cx32. Gap junctions formed from homopolymers of Cx26 differ markedly in the form and types of voltage dependence when they are compared to junctions formed by homopolymers of the closely related protein, Cx32. Heterotypic channels resulting from the union of Cx26 hemichannels with Cx32 hemichannels are unique in that they display junctional currents that rectify with a fast time course when transjunctional voltages, Vj, are applied. This fast Vj dependent rectification is similar to that described for some electronic synapses formed by gap junctions in the nervous system. We have developed a new procedure for the formation of gene chimeras that is not dependent on the existence of sequence homology between the two domains. We will use this procedure to determine the protein sequences that are responsible for the differences in voltage dependence of Cx26 and Cx32 and the fast rectification of heterotypic channels by examining the properties of channels formed by the expression these chimeras in pairs of Xenopus oocytes. The role of identified protein domains in the process voltage dependent gating can be inferred from biophysical analyses and tested lines the channel lumen and forms a gate that regulates ion flow. If this hypothesis is verified, the relationship between this domain and other regions of the molecule that function in the expression of voltage dependence will be explored. In the long term these studies should provide an account of the molecular mechanisms that underlie the process of voltage gating of gap junctions. The descriptions of such molecular mechanisms may have applicability to gating of other voltage dependent of ion channels and the should provide information concerning the relationship between protein structure and its function.
离子通道门控的机制尚不完全清楚

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thaddeus Andrew Bargiello其他文献

Thaddeus Andrew Bargiello的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thaddeus Andrew Bargiello', 18)}}的其他基金

Structure-Function relation of Connexin disease mutations
连接蛋白疾病突变的结构-功能关系
  • 批准号:
    8373594
  • 财政年份:
    2012
  • 资助金额:
    $ 24.77万
  • 项目类别:
Structure-Function relation of Connexin disease mutations
连接蛋白疾病突变的结构-功能关系
  • 批准号:
    8725194
  • 财政年份:
    2012
  • 资助金额:
    $ 24.77万
  • 项目类别:
Structure-Function relation of Connexin disease mutations
连接蛋白疾病突变的结构-功能关系
  • 批准号:
    8536864
  • 财政年份:
    2012
  • 资助金额:
    $ 24.77万
  • 项目类别:
Structure-Function relation of Connexin disease mutations
连接蛋白疾病突变的结构-功能关系
  • 批准号:
    9189954
  • 财政年份:
    2012
  • 资助金额:
    $ 24.77万
  • 项目类别:
ALL ATOM MOLECULAR DYNAMICS SIMULATION OF CONNEXIN HEMICHANNEL VOLTAGE GATING
连接蛋白半通道电压门控的全原子分子动力学模拟
  • 批准号:
    8364232
  • 财政年份:
    2011
  • 资助金额:
    $ 24.77万
  • 项目类别:
STRUCTURE/FUNCTION STUDIES OF GAP JUNCTIONS
间隙连接的结构/功能研究
  • 批准号:
    2654964
  • 财政年份:
    1992
  • 资助金额:
    $ 24.77万
  • 项目类别:
Structure/Function of Gap Junctions
间隙连接的结构/功能
  • 批准号:
    7391588
  • 财政年份:
    1992
  • 资助金额:
    $ 24.77万
  • 项目类别:
Structure/Function of Gap Junctions
间隙连接的结构/功能
  • 批准号:
    7216386
  • 财政年份:
    1992
  • 资助金额:
    $ 24.77万
  • 项目类别:
Structure/Function of Gap Junctions
间隙连接的结构/功能
  • 批准号:
    7585665
  • 财政年份:
    1992
  • 资助金额:
    $ 24.77万
  • 项目类别:
STRUCTURE/FUNCTION STUDIES OF GAP JUNCTIONS
间隙连接的结构/功能研究
  • 批准号:
    6229707
  • 财政年份:
    1992
  • 资助金额:
    $ 24.77万
  • 项目类别:

相似海外基金

FORTIFY - From Molecular Physiology to Biophysics of the Glymphatic System: a Regulatory Role for Aquaporin-4
FORTIFY - 从类淋巴系统的分子生理学到生物物理学:Aquaporin-4 的调节作用
  • 批准号:
    EP/Y023684/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.77万
  • 项目类别:
    Research Grant
The Biophysics of Mesoscale, Reversible, Biomolecular Assemblies
中尺度可逆生物分子组装的生物物理学
  • 批准号:
    EP/Y000501/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.77万
  • 项目类别:
    Fellowship
Biophysics of the brain’s waste disposal system: Understanding why we sleep
大脑废物处理系统的生物物理学:了解我们为什么睡觉
  • 批准号:
    DP230101113
  • 财政年份:
    2023
  • 资助金额:
    $ 24.77万
  • 项目类别:
    Discovery Projects
CAREER: Surfactant Proteins that Stabilize Biomolecular Condensates: From Biophysics to Biomaterials for Biomanufacturing
职业:稳定生物分子缩合物的表面活性剂蛋白:从生物物理学到生物制造的生物材料
  • 批准号:
    2238914
  • 财政年份:
    2023
  • 资助金额:
    $ 24.77万
  • 项目类别:
    Continuing Grant
Predoctoral Program in Biophysics
生物物理学博士前课程
  • 批准号:
    10628233
  • 财政年份:
    2023
  • 资助金额:
    $ 24.77万
  • 项目类别:
Biophysics of liquid droplets in bacteria
细菌中液滴的生物物理学
  • 批准号:
    2887560
  • 财政年份:
    2023
  • 资助金额:
    $ 24.77万
  • 项目类别:
    Studentship
REU Site: A Summer Research Experience in Structural and Computational Biology and Biophysics
REU 网站:结构与计算生物学和生物物理学的夏季研究经历
  • 批准号:
    2150396
  • 财政年份:
    2023
  • 资助金额:
    $ 24.77万
  • 项目类别:
    Continuing Grant
Biophysics Training Program
生物物理学培训计划
  • 批准号:
    10494714
  • 财政年份:
    2023
  • 资助金额:
    $ 24.77万
  • 项目类别:
Targeted Infusion Project: Creation of a Biophysics minor program for STEM success
有针对性的输液项目:为 STEM 成功创建生物物理学辅修课程
  • 批准号:
    2306506
  • 财政年份:
    2023
  • 资助金额:
    $ 24.77万
  • 项目类别:
    Standard Grant
Center: REU Site: Interdisciplinary Research Opportunities in Biophysics
中心:REU 地点:生物物理学的跨学科研究机会
  • 批准号:
    2242779
  • 财政年份:
    2023
  • 资助金额:
    $ 24.77万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了