The Variational Approach to Biharmonic Maps
双调和映射的变分方法
基本信息
- 批准号:EP/F048769/1
- 负责人:
- 金额:$ 27.52万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
When studying a certain class of geometric objects, it is often helpful to give special attention to the minimizers or maximizers of the quantities naturally associated to them. For instance, among all surfaces with fixed boundary, the ones that minimize the area are of special interest.For this project, we consider a different minimization principle. It is rooted in the theory of manifolds, which is the higher-dimensional equivalent of surfaces. The geometrical objects in question are mappings of one manifold onto another. The quantity that is to by minimized, can be thought of as a measure for the behaviour of the curvature under such a mapping. The solutions of this minimization problem are called biharmonic maps, and they give rise to nonlinear partial differential equations.The calculus of variations is a theory from mathematical analysis which provides tools and methods to study minimization problems and the corresponding differential equations. The problem of biharmonic maps, however, does not quite fit into the usual framework of this theory. The main object of this project is to reconcile the methods of the calculus of variations with the structure of the problem at hand.To this end, the space of geometrical objects will have to be extended appropriately. The partial differential equations of the problem have to be studied on the extended space, and the analytic methods used for this purpose have to be combined with the underlying geometry.The problem of biharmonic maps is only one of several problems with similar structures. Some of them are derived from geometry, others from mathematical models in physics or other fields. Results obtained for biharmonic maps are likely to find applications in one of the other theories, and vice versa. Therefore the research will not be limited to biharmonic maps, although they are at its centre.Not much is currently known about variational aspects of problems of this type. A successful study of these questions could make the powerful tools of the calculus of variations available to geometers or mathematical physicists studying biharmonic maps and related theories. In addition, it will add new methods to the theories of the calculus of variations and partial differential equations.
当研究某一类几何对象时,特别注意与它们自然相关的量的极小或极大值通常是有帮助的。例如,在所有具有固定边界的曲面中,面积最小的曲面具有特殊的兴趣。对于这个项目,我们考虑了不同的最小化原则。它植根于流形理论,流形是曲面的高维等价。所讨论的几何对象是一个流形到另一个流形的映射。被最小化的量可以被认为是在这样的映射下曲率行为的量度。这种极小化问题的解称为双调和映射,它们产生了非线性偏微分方程组。变分法是数学分析中的一种理论,它为研究极小化问题和相应的微分方程提供了工具和方法。然而,双调和映射的问题并不完全符合这一理论的通常框架。这个项目的主要目标是使变分的方法与手头的问题的结构相一致。为此,几何对象的空间将不得不适当地扩展。该问题的偏微分方程组必须在扩展的空间上进行研究,所使用的解析方法必须与基础几何相结合,双调和映射问题只是具有相似结构的几个问题之一。其中一些来自几何,另一些来自物理或其他领域的数学模型。对于双调和映射所得到的结果可能在其他理论中得到应用,反之亦然。因此,研究不会局限于双调和映射,尽管双调和映射是双调和映射的核心。目前对这类问题的变分方面了解不多。对这些问题的成功研究可能会为研究双调和地图和相关理论的几何学家或数学物理学家提供强大的变分工具。此外,它还将为变分和偏微分方程组理论增加新的方法。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A construction of biharmonic maps into homogeneous spaces
将双调和映射构造成均匀空间
- DOI:10.4310/cag.2014.v22.n3.a3
- 发表时间:2014
- 期刊:
- 影响因子:0.7
- 作者:Moser R
- 通讯作者:Moser R
A Reformulation of the Biharmonic Map Equation
双调和映射方程的重新表述
- DOI:10.1007/s12220-012-9369-2
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Hornung P
- 通讯作者:Hornung P
A relaxation of the intrinsic biharmonic energy
内在双谐波能量的弛豫
- DOI:10.1007/s00209-011-0883-x
- 发表时间:2011
- 期刊:
- 影响因子:0.8
- 作者:Hornung P
- 通讯作者:Hornung P
Euler-Lagrange equations for variational problems on space curves.
空间曲线上变分问题的欧拉-拉格朗日方程。
- DOI:10.1103/physreve.81.066603
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Hornung P
- 通讯作者:Hornung P
Energy identity for intrinsically biharmonic maps in four dimensions
- DOI:10.2140/apde.2012.5.61
- 发表时间:2012-06
- 期刊:
- 影响因子:2.2
- 作者:Peter Hornung;R. Moser
- 通讯作者:Peter Hornung;R. Moser
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roger Moser其他文献
Weighted $$infty $$-Willmore spheres
加权 $$infty $$-Willmore 球体
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Edward J. Gallagher;Roger Moser - 通讯作者:
Roger Moser
Interaction Energy of Domain Walls in a Nonlocal Ginzburg–Landau Type Model from Micromagnetics
- DOI:
10.1007/s00205-016-0964-4 - 发表时间:
2016-01-22 - 期刊:
- 影响因子:2.400
- 作者:
Radu Ignat;Roger Moser - 通讯作者:
Roger Moser
A geometric Ginzburg–Landau problem
- DOI:
10.1007/s00209-012-1029-5 - 发表时间:
2012-04-12 - 期刊:
- 影响因子:1.000
- 作者:
Roger Moser - 通讯作者:
Roger Moser
Vortex dynamics in the presence of excess energy for the Landau–Lifshitz–Gilbert equation
- DOI:
10.1007/s00526-013-0609-5 - 发表时间:
2013-03-12 - 期刊:
- 影响因子:2.000
- 作者:
Matthias Kurzke;Christof Melcher;Roger Moser;Daniel Spirn - 通讯作者:
Daniel Spirn
Partial Regularity for Harmonic Maps into Spheres at a Singular or Degenerate Free Boundary
- DOI:
10.1007/s12220-021-00788-w - 发表时间:
2022-01-05 - 期刊:
- 影响因子:1.500
- 作者:
Roger Moser;James Roberts - 通讯作者:
James Roberts
Roger Moser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roger Moser', 18)}}的其他基金
The Supreme Challenges of Supremal Functionals
至高泛函的最高挑战
- 批准号:
EP/X017206/1 - 财政年份:2023
- 资助金额:
$ 27.52万 - 项目类别:
Research Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
- 批准号:
EP/V008889/1 - 财政年份:2021
- 资助金额:
$ 27.52万 - 项目类别:
Research Grant
Higher Order Problems in Geometric Analysis
几何分析中的高阶问题
- 批准号:
EP/J004383/1 - 财政年份:2012
- 资助金额:
$ 27.52万 - 项目类别:
Research Grant
相似国自然基金
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
- 批准号:81070152
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
Understanding The Political Representation of Men: A Novel Approach to Making Politics More Inclusive
了解男性的政治代表性:使政治更具包容性的新方法
- 批准号:
EP/Z000246/1 - 财政年份:2025
- 资助金额:
$ 27.52万 - 项目类别:
Research Grant
Contaminants of emerging concern: An integrated approach for assessing impacts on the marine environment. Acronym: CONTRAST
新出现的污染物:评估对海洋环境影响的综合方法。
- 批准号:
10093180 - 财政年份:2024
- 资助金额:
$ 27.52万 - 项目类别:
EU-Funded
An engineering biology approach for sustainable production of omega 3 and pigments from microalgae
一种利用微藻可持续生产 omega 3 和色素的工程生物学方法
- 批准号:
10107393 - 财政年份:2024
- 资助金额:
$ 27.52万 - 项目类别:
Launchpad
An Integrated Life-course Approach for Person-centred Solutions and Care for Ageing with Multi-morbidity in the European Regions - STAGE; Stay Healthy Through Ageing
欧洲地区以人为本的解决方案和针对多种疾病的老龄化护理的综合生命全程方法 - STAGE;
- 批准号:
10112787 - 财政年份:2024
- 资助金额:
$ 27.52万 - 项目类别:
EU-Funded
「生きづらさ」を抱える妊産婦に対するnon-stigmatizing approachの開発
为正在经历“生活困难”的孕妇制定一种非侮辱性的方法
- 批准号:
24K14025 - 财政年份:2024
- 资助金额:
$ 27.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Host-Guest Complexation: A Modular Approach for Structural Control (MAS-Control) in Supramolecular Polymerization
主客体络合:超分子聚合中结构控制(MAS-Control)的模块化方法
- 批准号:
EP/Y027965/1 - 财政年份:2024
- 资助金额:
$ 27.52万 - 项目类别:
Fellowship
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
- 批准号:
EP/Y033507/1 - 财政年份:2024
- 资助金额:
$ 27.52万 - 项目类别:
Research Grant
How do healthy brains drive a healthy economy? A novel occupational neuroscience approach
健康的大脑如何推动健康的经济?
- 批准号:
MR/X034100/1 - 财政年份:2024
- 资助金额:
$ 27.52万 - 项目类别:
Fellowship
Haptic Shared Control Systems And A Neuroergonomic Approach To Measuring System Trust
触觉共享控制系统和测量系统信任的神经工学方法
- 批准号:
EP/Y00194X/1 - 财政年份:2024
- 资助金额:
$ 27.52万 - 项目类别:
Research Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316612 - 财政年份:2024
- 资助金额:
$ 27.52万 - 项目类别:
Standard Grant














{{item.name}}会员




