Higher Order Problems in Geometric Analysis
几何分析中的高阶问题
基本信息
- 批准号:EP/J004383/1
- 负责人:
- 金额:$ 2.2万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many problems in modern geometry are formulated in terms of nonlinear partial differential equations (PDEs), the analysis of which requires a high degree of expertise in the theory of PDEs as well as geometric insight. Since geometric principles or geometric constraints are often used in theoretical physics, engineering, or other sciences, the combination of analytic techniques with geometric ideas is also of tremendous interest outside of mathematics. Geometric analysis has thus always been interlinked with the theory of differential equations and with mathematical physics as well as geometry. But recently, interest in geometric PDEs has further increased through the work of Perelman, who solved a long-standing problem by proving the famous Poincare conjecture with a PDE-based approach, thereby increasing our understanding of three-dimensional spaces considerably.The bulk of existing work in the area is concerned with equations of order 2, but there is increasing interest in higher order problems. Typically these require completely new methods, because much of the second order theory relies heavily on the maximum principle, which is not available for higher order equations. We propose to hold a workshop on `Higher Order Problems in Geometric Analysis', bringing together some of the leading experts on problems of this sort. We envisage a meeting that not only allows an exchange of the latest ideas within the geometric analysis community, but also generates interactions with geometers, applied mathematicians, or engineers. Furthermore, PhD students and other young researchers should have the opportunity to learn about questions, ideas, and techniques that they may rarely encounter otherwise.
现代几何中的许多问题都是用非线性偏微分方程组(PDE)来描述的,对它的分析不仅需要几何洞察力,而且需要高度的偏微分方程组理论专业知识。由于几何原理或几何约束经常用于理论物理、工程或其他科学中,分析技术与几何思想的结合在数学之外也引起了极大的兴趣。因此,几何分析总是与微分方程式理论、数学物理和几何联系在一起。但最近,通过Perelman的工作,人们对几何偏微分方程组的兴趣进一步增加,他用基于偏微分方程组的方法证明了著名的Poincare猜想,从而解决了一个长期存在的问题,从而大大增加了我们对三维空间的理解。该领域现有的大部分工作涉及二阶方程,但对高阶问题的兴趣越来越大。这些通常需要全新的方法,因为许多二阶理论严重依赖于最大值原理,而这对于高阶方程是不可用的。我们建议举办一次关于“几何分析中的高阶问题”的研讨会,汇聚这类问题的一些顶尖专家。我们设想的会议不仅允许在几何分析社区内交流最新的想法,而且还可以与几何学家、应用数学家或工程师进行互动。此外,博士生和其他年轻的研究人员应该有机会了解他们在其他方面可能很少遇到的问题、想法和技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roger Moser其他文献
Weighted $$infty $$-Willmore spheres
加权 $$infty $$-Willmore 球体
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Edward J. Gallagher;Roger Moser - 通讯作者:
Roger Moser
Interaction Energy of Domain Walls in a Nonlocal Ginzburg–Landau Type Model from Micromagnetics
- DOI:
10.1007/s00205-016-0964-4 - 发表时间:
2016-01-22 - 期刊:
- 影响因子:2.400
- 作者:
Radu Ignat;Roger Moser - 通讯作者:
Roger Moser
A geometric Ginzburg–Landau problem
- DOI:
10.1007/s00209-012-1029-5 - 发表时间:
2012-04-12 - 期刊:
- 影响因子:1.000
- 作者:
Roger Moser - 通讯作者:
Roger Moser
Vortex dynamics in the presence of excess energy for the Landau–Lifshitz–Gilbert equation
- DOI:
10.1007/s00526-013-0609-5 - 发表时间:
2013-03-12 - 期刊:
- 影响因子:2.000
- 作者:
Matthias Kurzke;Christof Melcher;Roger Moser;Daniel Spirn - 通讯作者:
Daniel Spirn
Partial Regularity for Harmonic Maps into Spheres at a Singular or Degenerate Free Boundary
- DOI:
10.1007/s12220-021-00788-w - 发表时间:
2022-01-05 - 期刊:
- 影响因子:1.500
- 作者:
Roger Moser;James Roberts - 通讯作者:
James Roberts
Roger Moser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roger Moser', 18)}}的其他基金
The Supreme Challenges of Supremal Functionals
至高泛函的最高挑战
- 批准号:
EP/X017206/1 - 财政年份:2023
- 资助金额:
$ 2.2万 - 项目类别:
Research Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
- 批准号:
EP/V008889/1 - 财政年份:2021
- 资助金额:
$ 2.2万 - 项目类别:
Research Grant
The Variational Approach to Biharmonic Maps
双调和映射的变分方法
- 批准号:
EP/F048769/1 - 财政年份:2009
- 资助金额:
$ 2.2万 - 项目类别:
Research Grant
相似国自然基金
基于Order的SIS/LWE变体问题及其应用
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
Poisson Order, Morita 理论,群作用及相关课题
- 批准号:19ZR1434600
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Higher order methods for fluid structure interaction problems
流体结构相互作用问题的高阶方法
- 批准号:
2309606 - 财政年份:2023
- 资助金额:
$ 2.2万 - 项目类别:
Standard Grant
CAREER: Higher-Order Interactions in Tensors and Isomorphism Problems
职业:张量和同构问题中的高阶相互作用
- 批准号:
2047756 - 财政年份:2021
- 资助金额:
$ 2.2万 - 项目类别:
Continuing Grant
Fundamental Problems in the exact WKB analysis of higher-order equations
高阶方程WKB精确分析的基本问题
- 批准号:
21K13811 - 财政年份:2021
- 资助金额:
$ 2.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study of properties of solutions to geometric higher order variational problems
几何高阶变分问题解的性质研究
- 批准号:
20K14341 - 财政年份:2020
- 资助金额:
$ 2.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Higher Order Asymptotics for Some Nonstandard Problems in Time Series and in High Dimensions
一些时间序列和高维非标准问题的高阶渐近
- 批准号:
2006475 - 财政年份:2019
- 资助金额:
$ 2.2万 - 项目类别:
Continuing Grant
Higher order numerical methods for acoustic scattering problems with locally perturbed periodic structures
具有局部扰动周期性结构的声散射问题的高阶数值方法
- 批准号:
433126998 - 财政年份:2019
- 资助金额:
$ 2.2万 - 项目类别:
Research Grants
Higher order Unfitted Finite Element Methods for moving domain problems
移动域问题的高阶不拟合有限元方法
- 批准号:
319609890 - 财政年份:2016
- 资助金额:
$ 2.2万 - 项目类别:
Research Grants
Higher Order Asymptotics for Some Nonstandard Problems in Time Series and in High Dimensions
一些时间序列和高维非标准问题的高阶渐近
- 批准号:
1613192 - 财政年份:2016
- 资助金额:
$ 2.2万 - 项目类别:
Continuing Grant
Higher-Order Methods for Interface Problems with Non-Aligned Meshes
非对齐网格界面问题的高阶方法
- 批准号:
1522663 - 财政年份:2015
- 资助金额:
$ 2.2万 - 项目类别:
Standard Grant
Development and implementation of numerical algorithm for variational methods and generalized gradient flows for geometric evolution problems of higher order for surface processing in computer graphics
计算机图形学表面处理高阶几何演化问题的变分法和广义梯度流数值算法的开发和实现
- 批准号:
190140394 - 财政年份:2010
- 资助金额:
$ 2.2万 - 项目类别:
Research Fellowships














{{item.name}}会员




