Science Bridge Award USA: Harnessing Materials for Energy

美国科学桥奖:利用材料获取能源

基本信息

  • 批准号:
    EP/G042330/1
  • 负责人:
  • 金额:
    $ 184.46万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

This Science Bridge proposal builds upon the existing collaboration between the University of Cambridge and the University of California at Santa Barbara to perform the research required to bring existing research through to prototype products and devices in the field of energy-related materials. The proposal has five key themes: organic and inorganic solar cells; light emitting diodes (LEDs) based on gallium nitride (GaN); phosphors for solid-state lighting; organic LEDs (OLEDs); the low-cost integration of LEDs and OLEDs onto printed circuit boards; and ultralight materials and structures.An hour of solar radiation on the Earth provides 14 Terawatt-years of energy, almost the same as the world's total annual energy consumption. However, currently solar energy contributes only 0.03% of the world's energy needs, the main barriers to the widespread use of solar energy being cost and efficiency. The cost of solar cells (typically based on Si or CdTe) is currently too high by a factor of ten relative to other energy sources. The efficiency of solar cells is only 10-15% for Si and 20% for CdTe. We propose two approaches to make solar energy more viable. First, we propose to develop moderate-efficiency (about 15%) organic solar cells at extremely low-cost. UCSB will concentrate on developing more efficient cells and Cambridge will address low-cost manufacturing methods. This requires significant advances in printing methods for organic film deposition.The other approach to solar cells we will pursue is high-efficiency inorganic multilayer solar cells. The basic idea is that by stacking layers in the order of their bandgap, with the layer with the largest bandgap at the top, light is converted into electricity in the most efficient way. We propose to build an innovative multi-layer solar cell based on GaN/InGaN/Si. The GaN layer will absorb the UV part of the solar spectrum, the InGaN layer the blue and green parts and the Si layer the yellow, red and near-IR parts. The theoretical efficiency is above 60%. Such a cell would be too expensive for large-area applications, but would be designed to be used at the focus of mirrors that concentrate the solar light, which will make the technology competitive.GaN-based white lighting is extremely efficient and if used in our homes and offices it could save 15% of the electricity generated at power stations, 15% of the fuel used, and reduce carbon emissions by 15%. However for GaN-based white lighting to become widely used in homes and offices we have to increase the efficiency still further and reduce the cost. We will research various ways to increase the efficiency. To reduce the cost we will grow GaN-based LED structures on 150mm (six-inch) silicon wafers instead of the current growth on two-inch sapphire wafers. This would reduce the LED cost by a factor of ten. Cambridge will grow such LED structures and UCSB will process them into LED lamps.Current white LEDs mainly use a blue LED coated with a yellow phosphor, which gives a cold white light. We will research novel phosphors which give excellent colour rendering, so that skin tones, the colour of clothes, etc, look the same indoors and out. There is increasing evidence that such natural lighting is better for our health than poor quality artificial lighting. We will research OLEDs for large area applications in both displays and lighting. We will also develop the low-cost integration of both LEDs and OLEDs onto printed circuit boards, which will facilitate and reduce the cost of using LEDs and OLEDs.Finally, we will develop novel ultralight materials and structures for use in cars, buses, lorries, trains and planes. These are cellular materials like a honeycomb or 3D lattice. We will develop these using both polymers, metals and composites. Such ultralight materials/structures should save considerable amounts of energy when used in transportation systems such as cars, buses, trains and planes.
该科学桥提案建立在剑桥大学和加州大学圣巴巴拉分校之间现有的合作基础上,以进行必要的研究,将现有的研究成果转化为能源相关材料领域的原型产品和设备。该提案有五个关键主题:有机和无机太阳能电池;基于氮化镓的发光二极管;固态照明用磷光体;有机发光二极管;将发光二极管和有机发光二极管低成本集成到印刷电路板上;和超轻材料和结构。地球上一小时的太阳辐射提供14太瓦年的能量,几乎相当于世界每年的能源消耗总量。然而,目前太阳能仅占世界能源需求的0.03%,广泛使用太阳能的主要障碍是成本和效率。太阳能电池(通常基于Si或CdTe)的成本目前相对于其他能源高出十倍。太阳能电池的效率对于Si仅为10-15%,对于CdTe仅为20%。我们提出了两种方法,使太阳能更可行。首先,我们建议以极低的成本开发中等效率(约15%)的有机太阳能电池。UCSB将专注于开发更高效的电池,而剑桥将致力于低成本的制造方法。这就需要在有机薄膜沉积的印刷方法上取得重大进展。我们将追求的太阳能电池的另一种方法是高效无机多层太阳能电池。其基本思想是,通过按照带隙的顺序堆叠层,带隙最大的层位于顶部,光以最有效的方式转化为电。我们提出了一种基于GaN/InGaN/Si的创新多层太阳能电池。GaN层将吸收太阳光谱的UV部分,InGaN层吸收蓝色和绿色部分,Si层吸收黄色、红色和近IR部分。理论效率在60%以上。这种电池对于大面积应用来说过于昂贵,但将被设计成用于聚集太阳光的镜子焦点,这将使该技术具有竞争力。GaN基白色照明非常高效,如果用于我们的家庭和办公室,它可以节省15%的发电站发电量,15%的燃料消耗,并减少15%的碳排放。然而,为了使GaN基白色照明广泛用于家庭和办公室,我们必须进一步提高效率并降低成本。我们将研究各种方法来提高效率。为了降低成本,我们将在150毫米(6英寸)硅晶片上生长GaN基LED结构,而不是目前在2英寸蓝宝石晶片上生长。这将使LED成本降低十倍。剑桥将培育这样的LED结构,UCSB将把它们加工成LED灯。目前的白色LED主要使用涂有黄色磷光体的蓝色LED,它会发出冷的白色光。我们将研究新的荧光粉,提供出色的显色性,使肤色,衣服的颜色等,看起来相同的室内和室外。越来越多的证据表明,这种自然照明比质量差的人工照明更有利于我们的健康。我们将研究OLED在显示器和照明方面的大面积应用。我们还将开发低成本的LED和OLED集成到印刷电路板上,这将促进和降低LED和OLED的使用成本。最后,我们将开发用于汽车、公共汽车、卡车、火车和飞机的新型超轻材料和结构。这些是蜂窝状材料,如蜂窝或3D晶格。我们将使用聚合物、金属和复合材料开发这些产品。这种超轻材料/结构在用于诸如汽车、公共汽车、火车和飞机的运输系统中时应当节省大量的能量。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evidence for Dark States in the Temperature Dependent Recombination Dynamics of InGaN/GaN Quantum Wells
InGaN/GaN 量子阱温度相关复合动力学中暗态的证据
Carrier dynamics in non-polar GaN/AlGaN quantum wells intersected by basal-plane stacking faults
基面堆垛层错相交的非极性 GaN/AlGaN 量子阱中的载流子动力学
  • DOI:
    10.1002/pssc.200983574
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Badcock T
  • 通讯作者:
    Badcock T
Recombination mechanisms in heteroepitaxial non-polar InGaN/GaN quantum wells
异质外延非极性InGaN/GaN量子阱中的复合机制
  • DOI:
    10.1063/1.4731730
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Badcock T
  • 通讯作者:
    Badcock T
Carrier Density Dependent Localization and Consequences for Efficiency Droop in InGaN/GaN Quantum Well Structures
  • DOI:
    10.7567/jjap.52.08jk10
  • 发表时间:
    2013-08
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    T. Badcock;S. Hammersley;D. Watson‐Parris;P. Dawson;M. J. Godfrey;M. Kappers;C. McAleese;R. Oliver;C. Humphreys
  • 通讯作者:
    T. Badcock;S. Hammersley;D. Watson‐Parris;P. Dawson;M. J. Godfrey;M. Kappers;C. McAleese;R. Oliver;C. Humphreys
Modification of carrier localization in basal-plane stacking faults: The effect of Si-doping in a -plane GaN
基面堆垛层错中载流子局域化的修改:a 面 GaN 中硅掺杂的影响
  • DOI:
    10.1002/pssb.201100480
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Badcock T
  • 通讯作者:
    Badcock T
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Colin Humphreys其他文献

Colin Humphreys的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Colin Humphreys', 18)}}的其他基金

Lighting the Future
点亮未来
  • 批准号:
    EP/I012591/1
  • 财政年份:
    2010
  • 资助金额:
    $ 184.46万
  • 项目类别:
    Research Grant
Nitrides for the 21st century
21世纪的氮化物
  • 批准号:
    EP/H019324/1
  • 财政年份:
    2009
  • 资助金额:
    $ 184.46万
  • 项目类别:
    Research Grant
LED Lighting for the 21st Century
21 世纪的 LED 照明
  • 批准号:
    TS/G001383/1
  • 财政年份:
    2008
  • 资助金额:
    $ 184.46万
  • 项目类别:
    Research Grant
Defect reduction in GaN using the in-situ growth of transition metal nitride layers
利用过渡金属氮化物层的原位生长减少 GaN 的缺陷
  • 批准号:
    EP/F018614/1
  • 财政年份:
    2008
  • 资助金额:
    $ 184.46万
  • 项目类别:
    Research Grant
Quantitative, high resolution two-and-three dimensional dopant mapping in the Scanning Electron Microscope by Secondary Electron Spectro-Micro
通过二次电子能谱显微镜在扫描电子显微镜中进行定量、高分辨率二维和三维掺杂剂测绘
  • 批准号:
    EP/E029892/1
  • 财政年份:
    2007
  • 资助金额:
    $ 184.46万
  • 项目类别:
    Research Grant
Materials Challenges in GaN-based Light Emitting Structures
GaN 基发光结构的材料挑战
  • 批准号:
    EP/E035167/1
  • 财政年份:
    2006
  • 资助金额:
    $ 184.46万
  • 项目类别:
    Research Grant
Optimising GaN light emitting structures on free-standing GaN substrates
优化独立式 GaN 衬底上的 GaN 发光结构
  • 批准号:
    EP/E031625/1
  • 财政年份:
    2006
  • 资助金额:
    $ 184.46万
  • 项目类别:
    Research Grant

相似国自然基金

D-bridge-A型动态组装诱导发光材料的构建及其功能化研究
  • 批准号:
    MS25B060008
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
RIF1蛋白在处理超细后期桥(ultrafine anaphase bridge)和保障基因组稳定的作用
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Donor-Bridge-Acceptor的分子内电荷转移对有机光伏电池中激子的分离机制研究
  • 批准号:
    61404067
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Stories of Divided Politics: Polarisation and Bridge-Building in Colombia and Britain
政治分裂的故事:哥伦比亚和英国的两极分化和桥梁建设
  • 批准号:
    EP/Y03628X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 184.46万
  • 项目类别:
    Research Grant
Alabama Agricultural and Mechanical University ALSAMP Bridge to the Doctorate: Navigating BD Scholars’ Successful Transition to STEM Graduate Programs
阿拉巴马农业机械大学 ALSAMP 通往博士学位的桥梁:引导 BD 学者成功过渡到 STEM 研究生项目
  • 批准号:
    2404955
  • 财政年份:
    2024
  • 资助金额:
    $ 184.46万
  • 项目类别:
    Standard Grant
Berberine bridge enzyme-like proteins as key virulence factors in plant pathogens
小檗碱桥酶样蛋白作为植物病原体的关键毒力因子
  • 批准号:
    BB/Y003977/1
  • 财政年份:
    2024
  • 资助金额:
    $ 184.46万
  • 项目类别:
    Research Grant
RAPID: Developing an Interactive Dashboard for Collecting and Curating Traffic Data after the March 26, 2024 Francis Scott Key Bridge Collapse
RAPID:开发交互式仪表板,用于收集和管理 2024 年 3 月 26 日 Francis Scott Key 大桥倒塌后的交通数据
  • 批准号:
    2426947
  • 财政年份:
    2024
  • 资助金额:
    $ 184.46万
  • 项目类别:
    Standard Grant
Berberine bridge enzyme-like proteins as key virulence factors in plant pathogens
小檗碱桥酶样蛋白作为植物病原体的关键毒力因子
  • 批准号:
    BB/Y003489/1
  • 财政年份:
    2024
  • 资助金额:
    $ 184.46万
  • 项目类别:
    Research Grant
REU Site: Bridge to Research in Marine Sciences: A Summer REU Program in Savannah, Georgia
REU 站点:海洋科学研究的桥梁:佐治亚州萨凡纳的夏季 REU 项目
  • 批准号:
    2349080
  • 财政年份:
    2024
  • 资助金额:
    $ 184.46万
  • 项目类别:
    Continuing Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 184.46万
  • 项目类别:
    Standard Grant
Growing Prosperity through Financial Inclusion: “FinBridge” - Fintech Data to Bridge the Trust-Gap between Mainstream Financial Service Providers and Diaspora Communities in the UK and other Financially Underserved Minorities
通过金融包容性促进繁荣:“FinBridge” - 金融科技数据弥合主流金融服务提供商与英国侨民社区和其他金融服务不足的少数群体之间的信任差距
  • 批准号:
    10095550
  • 财政年份:
    2024
  • 资助金额:
    $ 184.46万
  • 项目类别:
    Collaborative R&D
Developing AI to bridge lab and field plant research
开发人工智能以连接实验室和野外植物研究
  • 批准号:
    BB/Y513969/1
  • 财政年份:
    2024
  • 资助金额:
    $ 184.46万
  • 项目类别:
    Research Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427232
  • 财政年份:
    2024
  • 资助金额:
    $ 184.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了