Materials Challenges in GaN-based Light Emitting Structures

GaN 基发光结构的材料挑战

基本信息

  • 批准号:
    EP/E035167/1
  • 负责人:
  • 金额:
    $ 173.56万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

Gallium nitride (GaN) is an amazing material that can emit brilliant light. GaN light emitting diodes (LEDs) first became available about ten years ago, and are already used in a wide range of applications, including interior lighting in cars, buses and planes; traffic lights, large full-colour displays and backlighting in mobile phones. GaN blue lasers are about to be sold for next-generation DVD players, in which the DVDs will contain up to ten times the amount of music or pictures as existing DVDs. Looking to the future, GaN may make possible high-quality, high efficiency white lighting which will produce major energy savings. Another exciting development could be high-efficiency deep ultra-violet LEDs for water purification, particularly in the developing world.Unfortunately, we are currently unable to make the high-efficiency white lighting and deep-UV LEDs referred to above because there are some key scientific problems that remain to be solved. To successfully surmount these challenges requires a detailed understanding of the complex processes involved in the fabrication of the light emitting regions of the LED. These consist of thin layers of an alloy called InGaN, which are sandwiched between thicker layers of GaN to make structures called quantum wells. These quantum wells are 50,000 times thinner than a human hair. We must also understand the processes that limit light emission and optimise the electrical conductivity of the many other semiconductor layers in an LED. Following on our highly successful work on GaN of the last five years which has put us into an internationally competitive position, we have put together a team of leading researchers from different universities and industry to attack the critical factors that limit the performance of GaN-based LEDs.One key limitation to our understanding is the reason why GaN blue LEDs emit brilliant light even though they are full of defects called dislocations that should quench the light emission arising from the quantum wells. This is hotly debated and in 2005 two major international conferences had special sessions devoted to discussing this topic. Our theory is that the light-emitting InGaN quantum wells have atomic scale thickness fluctuations on a nanometre lateral scale, and thus the light emission is mainly localised in tiny nanometre-scale regions away from the dislocations. However, this localisation is much weaker for UV LEDs, and so unfortunately dislocations strongly quench the light emission in these devices.A major thrust of our research is to understand how the electrical carriers whose interaction is responsible for the light emission are localised, and kept away from defects which would otherwise quench the light emission, and then to optimise this localisation. This may be achieved by engineering the growth of the quantum wells. To understand the quantum wells we will not only examine the light they emit, but use microscopes that allow us to visualise objects far smaller than the wavelength of light to image detailed, atomic-scale variations within the light emitting regions. Quantum structures made from GaN also have strong internal electric fields which can reduce the light emission. We will use specialist microscopy techniques to measure these fields, and study ways of reducing them.Another focus is to develop new methods of reducing the density of defects in crystals called dislocations. Additionally, we will study the electrical properties of the GaN material which surrounds the quantum wells in an LED, in order to understand what defects prevent electrical conduction and reduce their occurrence. Our research involves crystal growers, electron microscopists, experts in optical and electrical characterisation techniques, theoretical and experimental physicists, chemists, and materials scientists. Only this type of integrated approach can solve the challenging problems in GaN-based technology.
氮化镓(GaN)是一种令人惊叹的材料,可以发出明亮的光。GaN发光二极管(LED)在大约10年前首次上市,并且已经被广泛应用,包括汽车、公共汽车和飞机的内部照明;交通信号灯、大型全彩显示器和移动的手机的背光。GaN蓝色激光器将用于下一代DVD播放器,其中DVD包含的音乐或图片数量将是现有DVD的十倍。展望未来,GaN可能使高质量、高效率的白色照明成为可能,这将节省大量能源。另一个令人兴奋的发展可能是用于水净化的高效深紫外LED,特别是在发展中国家。不幸的是,我们目前无法制造上面提到的高效白色照明和深紫外LED,因为还有一些关键的科学问题有待解决。为了成功克服这些挑战,需要详细了解LED发光区域制造中涉及的复杂工艺。这些由一种叫做InGaN的合金薄层组成,它夹在较厚的GaN层之间,形成称为量子威尔斯的结构。这些量子威尔斯比人的头发细5万倍。我们还必须了解限制发光和优化LED中许多其他半导体层导电性的过程。在过去五年中,我们在GaN方面的工作非常成功,使我们处于国际竞争地位,我们已经召集了一个由来自不同大学和行业的领先研究人员组成的团队,以解决限制GaN性能的关键因素,我们理解的一个关键限制是为什么GaN蓝色LED发出明亮的光,即使它们充满了称为位错的缺陷。这将抑制从量子威尔斯产生的光发射。这是一个激烈的辩论,2005年,两个主要的国际会议举行了专门讨论这一主题的特别会议。我们的理论是,发光InGaN量子威尔斯在纳米横向尺度上具有原子尺度的厚度波动,因此发光主要局限于远离位错的微小纳米尺度区域。然而,这种局部化对于UV LED来说要弱得多,因此不幸的是,位错强烈地淬灭了这些器件中的光发射。我们研究的一个主要目标是了解相互作用负责光发射的电载流子是如何局部化的,并且远离否则会淬灭光发射的缺陷,然后优化这种局部化。这可以通过设计量子威尔斯的生长来实现。为了理解量子威尔斯,我们不仅要检查它们发出的光,还要使用显微镜,使我们能够可视化远小于光波长的物体,以成像发光区域内详细的原子级变化。由GaN制成的量子结构也具有强的内部电场,这可以减少光发射。我们将使用专业的显微镜技术来测量这些场,并研究减少它们的方法。另一个重点是开发减少晶体中称为位错的缺陷密度的新方法。此外,我们还将研究LED中量子威尔斯周围GaN材料的电学特性,以了解哪些缺陷会阻止导电并减少其发生。我们的研究涉及晶体生长者,电子显微镜,光学和电学表征技术专家,理论和实验物理学家,化学家和材料科学家。只有这种类型的集成方法才能解决GaN基技术中的挑战性问题。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optical polarisation anisotropy in a -plane GaN/AlGaN multiple quantum well structures
a 平面 GaN/AlGaN 多量子阱结构中的光学偏振各向异性
  • DOI:
    10.1002/pssc.200880796
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Badcock T
  • 通讯作者:
    Badcock T
Carrier dynamics in non-polar GaN/AlGaN quantum wells intersected by basal-plane stacking faults
基面堆垛层错相交的非极性 GaN/AlGaN 量子阱中的载流子动力学
  • DOI:
    10.1002/pssc.200983574
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Badcock T
  • 通讯作者:
    Badcock T
The Effect of Dislocation Density and Surface Morphology on the Optical Properties of InGaN/GaN Quantum Wells Grown on r-Plane Sapphire Substrates
位错密度和表面形貌对 r 面蓝宝石衬底上生长的 InGaN/GaN 量子阱光学性能的影响
Reduction of the dislocation density in HVPE-grown GaN epi-layers by an in situ SiNx treatment
  • DOI:
    10.1016/j.jcrysgro.2009.11.043
  • 发表时间:
    2010-02-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Ashraf, H.;Rao, D. V. Sridhara;Hageman, P. R.
  • 通讯作者:
    Hageman, P. R.
Optical polarization anisotropy of a-plane GaN/AlGaN multiple quantum well structures grown on r-plane sapphire substrates
r 面蓝宝石衬底上生长的 a 面 GaN/AlGaN 多量子阱结构的光学偏振各向异性
  • DOI:
    10.1063/1.3156688
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Badcock T
  • 通讯作者:
    Badcock T
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Colin Humphreys其他文献

Colin Humphreys的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Colin Humphreys', 18)}}的其他基金

Lighting the Future
点亮未来
  • 批准号:
    EP/I012591/1
  • 财政年份:
    2010
  • 资助金额:
    $ 173.56万
  • 项目类别:
    Research Grant
Nitrides for the 21st century
21世纪的氮化物
  • 批准号:
    EP/H019324/1
  • 财政年份:
    2009
  • 资助金额:
    $ 173.56万
  • 项目类别:
    Research Grant
Science Bridge Award USA: Harnessing Materials for Energy
美国科学桥奖:利用材料获取能源
  • 批准号:
    EP/G042330/1
  • 财政年份:
    2009
  • 资助金额:
    $ 173.56万
  • 项目类别:
    Research Grant
LED Lighting for the 21st Century
21 世纪的 LED 照明
  • 批准号:
    TS/G001383/1
  • 财政年份:
    2008
  • 资助金额:
    $ 173.56万
  • 项目类别:
    Research Grant
Defect reduction in GaN using the in-situ growth of transition metal nitride layers
利用过渡金属氮化物层的原位生长减少 GaN 的缺陷
  • 批准号:
    EP/F018614/1
  • 财政年份:
    2008
  • 资助金额:
    $ 173.56万
  • 项目类别:
    Research Grant
Quantitative, high resolution two-and-three dimensional dopant mapping in the Scanning Electron Microscope by Secondary Electron Spectro-Micro
通过二次电子能谱显微镜在扫描电子显微镜中进行定量、高分辨率二维和三维掺杂剂测绘
  • 批准号:
    EP/E029892/1
  • 财政年份:
    2007
  • 资助金额:
    $ 173.56万
  • 项目类别:
    Research Grant
Optimising GaN light emitting structures on free-standing GaN substrates
优化独立式 GaN 衬底上的 GaN 发光结构
  • 批准号:
    EP/E031625/1
  • 财政年份:
    2006
  • 资助金额:
    $ 173.56万
  • 项目类别:
    Research Grant

相似国自然基金

Supply Chain Collaboration in addressing Grand Challenges: Socio-Technical Perspective
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

Understanding Latin American Challenges in the 21st Century (LAC-EU)
了解拉丁美洲在 21 世纪面临的挑战 (LAC-EU)
  • 批准号:
    EP/Y034694/1
  • 财政年份:
    2024
  • 资助金额:
    $ 173.56万
  • 项目类别:
    Research Grant
CREST HBCU-RISE: Advancing Theoretical Artificial Intelligence Infrastructure for Modern Data Science Challenges
CREST HBCU-RISE:推进理论人工智能基础设施应对现代数据科学挑战
  • 批准号:
    2409093
  • 财政年份:
    2024
  • 资助金额:
    $ 173.56万
  • 项目类别:
    Continuing Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
  • 批准号:
    2400036
  • 财政年份:
    2024
  • 资助金额:
    $ 173.56万
  • 项目类别:
    Standard Grant
Student Design Essay Competition "Challenges in the Design of Complex Systems"; Travel Support to ASME IDETC 2024, ASME IDETC 2025, and ASME IDETC 2026 Conferences
学生设计征文比赛“复杂系统设计中的挑战”;
  • 批准号:
    2345214
  • 财政年份:
    2024
  • 资助金额:
    $ 173.56万
  • 项目类别:
    Standard Grant
Expert Network for Novel Foods Regulatory Challenges – UK's first collaboration cluster to support best practice and facilitate the regulatory approval journey of innovative food ingredients
新食品监管挑战专家网络 — 英国首个支持最佳实践并促进创新食品成分监管审批进程的合作集群
  • 批准号:
    10114832
  • 财政年份:
    2024
  • 资助金额:
    $ 173.56万
  • 项目类别:
    Collaborative R&D
Lignin-based coatings: A novel approach to turn challenges into opportunities for anti-corrosion and anti-wear applications
木质素涂料:一种将防腐和抗磨损应用挑战转化为机遇的新方法
  • 批准号:
    EP/Y022009/1
  • 财政年份:
    2024
  • 资助金额:
    $ 173.56万
  • 项目类别:
    Research Grant
Challenges in Immersive Audio Technology
沉浸式音频技术的挑战
  • 批准号:
    EP/X032914/1
  • 财政年份:
    2024
  • 资助金额:
    $ 173.56万
  • 项目类别:
    Research Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 173.56万
  • 项目类别:
    Research Grant
Adaptive Multi-Source Transfer Learning Approaches for Environmental Challenges
应对环境挑战的自适应多源迁移学习方法
  • 批准号:
    EP/Y002539/1
  • 财政年份:
    2024
  • 资助金额:
    $ 173.56万
  • 项目类别:
    Research Grant
CAREER: Going Beyond the Dyad: A Network Theory for Understanding the Challenges of Friendship
职业:超越二元:理解友谊挑战的网络理论
  • 批准号:
    2340942
  • 财政年份:
    2024
  • 资助金额:
    $ 173.56万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了