Lighting the Future
点亮未来
基本信息
- 批准号:EP/I012591/1
- 负责人:
- 金额:$ 810.6万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Next time you change a tungsten filament light-bulb, give a brief thought to the amount of energy that bulb will have used up over its lifetime: more than 200 million Joules (about the same amount of energy as is contained in 3 tonnes of coal)! If you consider how many light bulbs must be in use in the world at this moment, it becomes clear that a huge amount of energy is spent keeping our homes and offices lit. In fact, about a fifth of electricity usage in the UK is for lighting. Hence, improvements in something as simple as light bulb efficiency could have an enormous impact on the UK's greenhouse gas emissions and use of fossil fuels.A new semiconductor material - gallium nitride (GaN) - provides a potential solution to the lighting problem. GaN is used to make white light-emitting diodes (LEDs). These solid state-light sources are already much more efficient than conventional tungsten filament light bulbs, and could potentially yield efficiency improvements of more than ten times (and be three times more efficient than compact fluorescent lamps). To achieve these vast improvements in efficiency, we need to thoroughly understand the material from which we make the LEDs, and how its structure, composition and properties influence LED performance. We also need to design devices which make the best possible use of everything we learn about the material. A large number of different factors influence the efficiency of LEDs, and in this programme, scientists from Cambridge, Manchester, Bath and Strathclyde are pooling their expertise to understand what limits the efficiency and find solutions which will benefit all of us, by providing sensibly-priced, highly-efficient lighting units which will be long-lasting and provide attractive high-quality light in homes and offices.To do this, we are breaking down the question of LED efficiency into a number of inter-linked scientific projects. GaN LEDs are based on thin layers of material grown on other materials such as silicon or sapphire. Electric current is passed into the active region of the LED, from which the light is emitted. The active region consists of very thin alternating layers of GaN and another semiconductor - indium gallium nitride (InGaN). The InGaN layers are only ten atomic layers thick and are called quantum wells. In the InGaN layers, positive and negative charge carriers become trapped and hence combine with one another giving out light. The GaN and InGaN crystals are not perfect, however, and defects in their structure can disrupt the light emission process, resulting in the production of heat rather than light and a reduction in LED efficiency. In the early years of our programme, we plan to tackle fundamental questions relating to light emission efficiency, by pursuing projects concentrating on the defects in the material, the detailed small-scale structure of the InGaN quantum wells and the electric fields which arise in those quantum wells. The effect of all of these factors will be dependent on the amount of electricity injected into the LED, and a major problem is that LED efficiency drops at high injection currents. Since high brightness LEDs for lighting require high electric currents, we will also need to understand this question before solid state lighting can reach its full potential.The new materials and structures we develop will have to be integrated into working LED devices, and the architecture of those devices is also a key factor affecting efficiency. Hence, another of our research projects will address device design. By bringing the new ideas we develop about materials and devices together we aim to produce LEDs that are highly efficient and thus beneficial to our environment, cheap to buy and, unlike compact fluorescent lamps, produce an attractive colour of light to make homes and offices pleasant and healthy places to be. In the end, we hope the products of our research really will be lighting your future!
下次你换钨丝灯泡的时候,简单地想一想灯泡在其使用寿命中消耗的能量:超过2亿焦耳(大约相当于3吨煤所含的能量)!如果你考虑一下目前世界上有多少灯泡在使用,很明显,我们的家庭和办公室需要消耗大量的能源来保持照明。事实上,英国大约五分之一的用电量用于照明。因此,灯泡效率这样简单的事情的改进可能会对英国的温室气体排放和化石燃料的使用产生巨大影响。一种新的半导体材料-氮化镓(GaN)-为照明问题提供了潜在的解决方案。GaN用于制造白色发光二极管(LED)。这些固态光源已经比传统的钨丝灯泡效率高得多,并且可能产生超过十倍的效率改进(并且比紧凑型荧光灯效率高三倍)。为了实现这些效率的巨大提高,我们需要彻底了解我们制造LED的材料,以及其结构,成分和属性如何影响LED性能。我们还需要设计出能最好地利用我们所了解的材料的装置。影响LED效率的因素有很多,在这个项目中,来自剑桥、曼彻斯特、巴斯和斯特拉斯克莱德的科学家们正在汇集他们的专业知识,了解是什么限制了效率,并找到解决方案,通过提供合理的价格,高效的照明单元,这些照明单元将持久耐用,并为家庭和办公室提供有吸引力的高质量光线,使我们所有人受益。我们正在将LED效率的问题分解为许多相互关联的科学项目。GaN LED基于在诸如硅或蓝宝石的其他材料上生长的材料的薄层。电流被传递到LED的有源区中,光从该有源区发射。有源区由GaN和另一种半导体-氮化铟镓(InGaN)的非常薄的交替层组成。InGaN层只有十个原子层厚,被称为量子威尔斯。在InGaN层中,正电荷载流子和负电荷载流子被捕获,因此彼此联合收割机结合而发光。然而,GaN和InGaN晶体并不完美,其结构中的缺陷会破坏发光过程,导致产生热量而不是光,并降低LED效率。在我们计划的最初几年,我们计划解决与发光效率有关的基本问题,通过追求专注于材料缺陷的项目,InGaN量子威尔斯的详细小规模结构以及这些量子威尔斯中出现的电场。所有这些因素的影响将取决于注入LED的电量,主要问题是LED效率在高注入电流下下降。由于高亮度LED照明需要高电流,因此在固态照明充分发挥其潜力之前,我们也需要了解这个问题。我们开发的新材料和结构必须集成到工作的LED器件中,这些器件的结构也是影响效率的关键因素。因此,我们的另一个研究项目将涉及设备设计。通过将我们开发的关于材料和设备的新想法结合在一起,我们的目标是生产高效的LED,从而对我们的环境有益,购买便宜,并且与紧凑型荧光灯不同,产生有吸引力的光颜色,使家庭和办公室成为舒适和健康的地方。最后,我们希望我们的研究成果能真正照亮您的未来!
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evidence for Dark States in the Temperature Dependent Recombination Dynamics of InGaN/GaN Quantum Wells
InGaN/GaN 量子阱温度相关复合动力学中暗态的证据
- DOI:10.7567/jjap.52.08jl12
- 发表时间:2013
- 期刊:
- 影响因子:1.5
- 作者:Badcock T
- 通讯作者:Badcock T
Reduction of the dislocation density in HVPE-grown GaN epi-layers by an in situ SiNx treatment
- DOI:10.1016/j.jcrysgro.2009.11.043
- 发表时间:2010-02-01
- 期刊:
- 影响因子:1.8
- 作者:Ashraf, H.;Rao, D. V. Sridhara;Hageman, P. R.
- 通讯作者:Hageman, P. R.
Accurate calibration for the quantification of the Al content in AlGaN epitaxial layers by energy-dispersive X-ray spectroscopy in a Transmission Electron Microscope
通过透射电子显微镜中的能量色散 X 射线光谱准确定量 AlGaN 外延层中的 Al 含量
- DOI:10.1088/1742-6596/326/1/012028
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Amari H
- 通讯作者:Amari H
Carrier dynamics in non-polar GaN/AlGaN quantum wells intersected by basal-plane stacking faults
基面堆垛层错相交的非极性 GaN/AlGaN 量子阱中的载流子动力学
- DOI:10.1002/pssc.200983574
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Badcock T
- 通讯作者:Badcock T
A single emitting layer white OLED based on exciplex interface emission
- DOI:10.1039/c6tc00750c
- 发表时间:2016-01-01
- 期刊:
- 影响因子:6.4
- 作者:Angioni, E.;Chapran, M.;Skabara, P. J.
- 通讯作者:Skabara, P. J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Colin Humphreys其他文献
Colin Humphreys的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Colin Humphreys', 18)}}的其他基金
Science Bridge Award USA: Harnessing Materials for Energy
美国科学桥奖:利用材料获取能源
- 批准号:
EP/G042330/1 - 财政年份:2009
- 资助金额:
$ 810.6万 - 项目类别:
Research Grant
LED Lighting for the 21st Century
21 世纪的 LED 照明
- 批准号:
TS/G001383/1 - 财政年份:2008
- 资助金额:
$ 810.6万 - 项目类别:
Research Grant
Defect reduction in GaN using the in-situ growth of transition metal nitride layers
利用过渡金属氮化物层的原位生长减少 GaN 的缺陷
- 批准号:
EP/F018614/1 - 财政年份:2008
- 资助金额:
$ 810.6万 - 项目类别:
Research Grant
Quantitative, high resolution two-and-three dimensional dopant mapping in the Scanning Electron Microscope by Secondary Electron Spectro-Micro
通过二次电子能谱显微镜在扫描电子显微镜中进行定量、高分辨率二维和三维掺杂剂测绘
- 批准号:
EP/E029892/1 - 财政年份:2007
- 资助金额:
$ 810.6万 - 项目类别:
Research Grant
Materials Challenges in GaN-based Light Emitting Structures
GaN 基发光结构的材料挑战
- 批准号:
EP/E035167/1 - 财政年份:2006
- 资助金额:
$ 810.6万 - 项目类别:
Research Grant
Optimising GaN light emitting structures on free-standing GaN substrates
优化独立式 GaN 衬底上的 GaN 发光结构
- 批准号:
EP/E031625/1 - 财政年份:2006
- 资助金额:
$ 810.6万 - 项目类别:
Research Grant
相似海外基金
Home helper robots: Understanding our future lives with human-like AI
家庭帮手机器人:用类人人工智能了解我们的未来生活
- 批准号:
FT230100021 - 财政年份:2025
- 资助金额:
$ 810.6万 - 项目类别:
ARC Future Fellowships
FABB-HVDC (Future Aerospace power conversion Building Blocks for High Voltage DC electrical power systems)
FABB-HVDC(高压直流电力系统的未来航空航天电力转换构建模块)
- 批准号:
10079892 - 财政年份:2024
- 资助金额:
$ 810.6万 - 项目类别:
Legacy Department of Trade & Industry
Human-Robot Co-Evolution: Achieving the full potential of future workplaces
人机协同进化:充分发挥未来工作场所的潜力
- 批准号:
DP240100938 - 财政年份:2024
- 资助金额:
$ 810.6万 - 项目类别:
Discovery Projects
Cities as transformative agents for a climate-safe future
城市是气候安全未来的变革推动者
- 批准号:
FL230100021 - 财政年份:2024
- 资助金额:
$ 810.6万 - 项目类别:
Australian Laureate Fellowships
Cloud immersion and the future of tropical montane forests
云沉浸和热带山地森林的未来
- 批准号:
EP/Y027736/1 - 财政年份:2024
- 资助金额:
$ 810.6万 - 项目类别:
Fellowship
Mem-Fast Membranes as Enablers for Future Biorefineries: from Fabrication to Advanced Separation Technologies
Mem-Fast 膜作为未来生物精炼的推动者:从制造到先进的分离技术
- 批准号:
EP/Y032004/1 - 财政年份:2024
- 资助金额:
$ 810.6万 - 项目类别:
Research Grant
International Centre-to-Centre Collaboration: New catalysts for acetylene processes enabling a sustainable future
国际中心间合作:乙炔工艺的新型催化剂实现可持续的未来
- 批准号:
EP/Z531285/1 - 财政年份:2024
- 资助金额:
$ 810.6万 - 项目类别:
Research Grant
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
- 批准号:
MR/S034420/2 - 财政年份:2024
- 资助金额:
$ 810.6万 - 项目类别:
Fellowship
CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
- 批准号:
2338621 - 财政年份:2024
- 资助金额:
$ 810.6万 - 项目类别:
Continuing Grant
Securing the Future: Inclusive Cybersecurity Education for All
确保未来:全民包容性网络安全教育
- 批准号:
2350448 - 财政年份:2024
- 资助金额:
$ 810.6万 - 项目类别:
Standard Grant