A new method for studying laser and electron interactions for a wide range of atomic targets - collision studies in an optical enhancement cavity

研究各种原子目标的激光和电子相互作用的新方法 - 光学增强腔中的碰撞研究

基本信息

  • 批准号:
    EP/G068690/1
  • 负责人:
  • 金额:
    $ 69.38万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

One of the most fundamental processes to be understood in physics is how atoms are excited by collision with different particles such as electrons. This process occurs in many areas from the production of lighting, the development of lasers, ionospheric and atmospheric processes of importance to climate change, lightning discharges, astrophysical processes as in stars and planets, the spectroscopy of atoms and molecules and in all industries using electricity. It is essential to understand these processes at a fundamental level so new technologies can be developed, and so we can apply our knowledge to further understanding of climate change and the structure of the universe.The most detailed information on these processes is obtained by experimentally determining the 'shape' of an excited atom following inelastic scattering of an electron. We can do this by studying the light emitted from the atom as it relaxes back to the ground state. The result of these studies as a function of the electron scattering angle are then compared to predictions from sophisticated quantum theories. A new technique recently developed in Manchester allows us to measure the shape of the atom over ALL scattering angles - a task that has been impossible previously. These experiments use a specially designed magnetic field to steer electrons to and from the interaction region so all angles can be accessed. A laser beam prepares the atoms in an excited state prior to the collision, and so the electrons scatter with more energy than they had prior to the collision (super-elastic scattering). We then detect these higher energy electrons as a function of properties of the laser beam. The experiments therefore effectively reverse time - instead of starting with an electron and then looking for a photon from the excited atom, we start with a laser photon and then look for the emerging electron! By doing this, the experiments produce data thousands of times faster than using standard techniques (since the laser beam is always sent in the same direction). By adopting these methods, we can very precisely determine the shape of the atom for comparison to theory (now being developed in the USA and Australia).The apparatus in Manchester is now the most sophisticated super-elastic scattering spectrometer in the world, and has produced data never seen before. We wish to significantly extend these studies here, by incorporating an optical technique which allows us to excite many more targets than is currently possible (up to 25 new targets will be accessible compared to those which can be excited at present). To facilitate this, we will place high reflectivity mirrors around the interaction region to act as a 'storage' of light inside the spectrometer. This 'optical cavity' allows the laser power between the mirrors to be increased by up to 50 times compared to that directly from the laser. We will use this new technique to prepare atoms using UV laser radiation for the first time. Super-elastically scattered electrons will then be detected from the excited atoms, which will include zinc, silver and gold targets. These are of interest for new lighting technologies (which are currently considering using zinc as a replacement for the environmentally toxic mercury in fluorescent and UV lights), and for comparison to new quantum theories being developed to describe these complex atoms.As part of this programme we will also develop a new type of external doubling cavity that can excite two laser frequencies simultaneously from the one laser beam. This is necessary for excitation of atoms with hyperfine structure (including gold and silver), where the nuclear spin splits the energy level of the ground state. The new type of doubling cavity we will develop here will have application in a wide range of different areas of laser and atomic physics, as will the development and implementation of the optical cavity enhancement inside the spectrometer.
物理学中要理解的最基本过程之一是与不同颗粒(例如电子粒子)碰撞的原子如何激发。此过程发生在许多领域,从照明的产生,激光的发展,电离层和大气过程对气候变化的重要性,闪电排放,恒星和行星中的天体物理过程,原子和分子的光谱以及使用电力的所有行业的光谱。必须在基本层面上理解这些过程,以便可以开发新技术,因此我们可以将知识应用于对气候变化和宇宙结构的进一步理解。这些过程的最详细信息是通过实验确定激发原子的“形状”,遵循电子弹性散射的“形状”。我们可以通过研究原子放松回到基态时从原子中发出的光来做到这一点。然后将这些研究与电子散射角的函数与复杂量子理论的预测进行了比较。最近在曼彻斯特开发的一项新技术使我们能够在所有散射角度上测量原子的形状 - 这是以前不可能的任务。这些实验使用专门设计的磁场来将电子转移到相互作用区域,从而可以访问所有角度。激光束在碰撞前以激发态制备原子,因此电子散射的能量比碰撞之前的能量更多(超弹性散射)。然后,我们检测到这些较高的能电子作为激光束性能的函数。因此,实验有效地反向时间 - 而不是从电子开始,然后从激发原子中寻找光子,而是从激光光子开始,然后寻找新兴电子!通过这样做,实验比使用标准技术快数千倍(因为激光束始终朝着相同的方向发送)。通过采用这些方法,我们可以非常精确地确定与理论进行比较的原子的形状(现在是在美国和澳大利亚开发的)。曼彻斯特的设备现在是世界上最复杂的超弹性散射光谱仪,并且产生了从未见过的数据。我们希望通过合并一项光学技术来显着扩展这些研究,该技术使我们能够激发比目前可能的更多目标(与目前可以兴奋的目标相比,最多可访问25个新目标)。为了促进这一点,我们将在相互作用区域周围放置高反射率镜子,以充当光谱仪内部光的“存储”。与直接从激光器相比,这种“光腔”允许镜之间的激光功率提高多达50倍。我们将首次使用这种新技术使用紫外线辐射来制备原子。然后将从激发原子中检测到超弹性电子,其中包括锌,银和金靶。这些对于新的照明技术(目前正在考虑使用锌作为替代荧光和紫外线的环境有毒汞的替代),并且与开发的新量子理论进行比较,以描述这些复杂的原子。作为该程序的一部分,我们还将开发出一种新型的外部双重动物,可以使两种磁带频率同时发生一种lasultemence a pem ene ene ene enculties face of sosulties face of sosulties face ose ose ose ose osere a lasultemence。这对于具有超细结构(包括金和银)的原子的激发是必不可少的,其中核旋转将基态的能级分裂。我们将在这里开发的新型加倍型腔体将在各种不同区域的激光和原子物理学中进行应用,光谱仪内部光腔增强的开发和实施也将在光谱仪内部进行。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Super-elastic electron scattering from the laser-excited 4 1 P 1 state of calcium at low incident energy
低入射能量下钙的激光激发 4 1 P 1 态的超弹性电子散射
Recent theoretical progress in treating electron impact ionization of molecules
处理分子电子碰撞电离的最新理论进展
  • DOI:
    10.1088/1742-6596/212/1/012004
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Al-Hagan O
  • 通讯作者:
    Al-Hagan O
Theoretical and experimental ( e , 2 e ) study of electron-impact ionization of laser-aligned Mg atoms
激光对准镁原子电子轰击电离的理论与实验 ( e , 2 e ) 研究
  • DOI:
    10.1103/physreva.90.062707
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Amami S
  • 通讯作者:
    Amami S
Evidence for unnatural-parity contributions to electron-impact ionization of laser-aligned atoms
激光排列原子电子轰击电离的非自然宇称贡献的证据
  • DOI:
    10.1103/physreva.92.032706
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Armstrong G
  • 通讯作者:
    Armstrong G
Parametrization of electron-impact ionization cross sections from laser-excited and aligned atoms.
激光激发和排列原子的电子碰撞电离截面的参数化。
  • DOI:
    10.1103/physrevlett.112.023202
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Nixon KL
  • 通讯作者:
    Nixon KL
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Murray其他文献

Centennial- to millennial-scale hard rock erosion rates deduced from luminescence-depth profiles
从发光深度剖面推导出百年至千年尺度的硬岩侵蚀率
  • DOI:
    10.1016/j.epsl.2018.04.017
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Reza Sohbati;Jinfeng Liu;Mayank Jain;Andrew Murray;David Egholm;Richard Paris;Benny Guralnik
  • 通讯作者:
    Benny Guralnik
A National Study of End-of-Life Care Among Older Veterans with Hearing and Vision Loss (RP508)
  • DOI:
    10.1016/j.jpainsymman.2020.04.100
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Joan Carpenter;Mary Ersek;Francis Nelson;Daniel Kinder;Melissa Wachterman;Dawn Smith;Andrew Murray;Melissa Garrido
  • 通讯作者:
    Melissa Garrido
The effect of test dose and first IR stimulation temperature on post-IR IRSL measurements of rock slices
测试剂量和首次红外刺激温度对岩石切片后红外 IRSL 测量的影响
  • DOI:
    10.1515/geochr-2015-0049
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Jinfeng Liu;Andrew Murray;Reza Sohbati;Mayank Jain
  • 通讯作者:
    Mayank Jain
Golf: a matter of life and death, health and happiness, or just Olympic medals?
高尔夫:事关生与死、健康与幸福,还是只是奥运奖牌?
  • DOI:
    10.1136/bjsports-2016-096316
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    18.4
  • 作者:
    R. Hawkes;O. Malik;Andrew Murray
  • 通讯作者:
    Andrew Murray
Pillow: 3.1.0
枕头:3.1.0
  • DOI:
    10.5281/zenodo.44297
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    wiredfool;Brian Crowell;Alastair Houghton;Andrew G. Clark;Hugo;Mikhail Korobov;Yifu Yu;eliempje;Steve Johnson;Oliver Tonnhofer;Esteban Santana Santana;David Caro;Eric W. Brown;Felipe Reyes;Lars Jørgen Solberg;Antony Lee;Andrew Murray;Nicolas Pieuchot;Sandro Mani;Fredrik Tolf;David A. Schmidt;Joaquín Cuenca Abela;Alexander Karpinsky;Josh Ware;Benoit Pierre;Michael Brown;Michał Górny;Alexey Buzanov;Steve Kossouho;Christoph Gohlke
  • 通讯作者:
    Christoph Gohlke

Andrew Murray的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Murray', 18)}}的其他基金

(e,gamma,2e) Threshold Spectroscopy - A new method to study collisional excitation of atoms using combined laser and electron beams
(e,gamma,2e) 阈值光谱 - 一种使用激光和电子束组合来研究原子碰撞激发的新方法
  • 批准号:
    EP/W003864/1
  • 财政年份:
    2022
  • 资助金额:
    $ 69.38万
  • 项目类别:
    Research Grant
'Double-slit' and multiple-path Interference studies from Rb excited and ionized by high-resolution laser radiation.
高分辨率激光辐射激发和电离铷的“双缝”和多路干涉研究。
  • 批准号:
    EP/V027689/1
  • 财政年份:
    2021
  • 资助金额:
    $ 69.38万
  • 项目类别:
    Research Grant
NSF-Simons Center for Mathematical and Statistical Analysis of Biology
NSF-西蒙斯生物学数学和统计分析中心
  • 批准号:
    1764269
  • 财政年份:
    2018
  • 资助金额:
    $ 69.38万
  • 项目类别:
    Continuing Grant
2017 Molecular Mechanisms in Evolution Gordon Research Conference at Stonehill College Easton, MA
2017 年进化分子机制戈登研究会议在马萨诸塞州伊斯顿斯通希尔学院举行
  • 批准号:
    1707469
  • 财政年份:
    2017
  • 资助金额:
    $ 69.38万
  • 项目类别:
    Standard Grant
Coherent Control and Manipulation of Natural and Un-Natural Parity Contributions to Electron Impact Ionization from Laser-Excited Atoms.
自然和非自然宇称对激光激发原子电子碰撞电离的相干控制和操纵。
  • 批准号:
    EP/P00671X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 69.38万
  • 项目类别:
    Research Grant
Collaborative Research: Variable Geometry Dies for Polymer Extrusion
合作研究:用于聚合物挤出的可变几何模具
  • 批准号:
    1234374
  • 财政年份:
    2012
  • 资助金额:
    $ 69.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Part Orienting Devices (PODs) - Novel Devices for Spatial Assembly Tasks
协作研究:零件定向设备 (POD) - 用于空间装配任务的新型设备
  • 批准号:
    0422731
  • 财政年份:
    2004
  • 资助金额:
    $ 69.38万
  • 项目类别:
    Continuing Grant

相似国自然基金

疫苗接种后和自然感染后新冠病毒特异性T细胞应答的研究
  • 批准号:
    32370945
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于免疫代谢机制的新污染物毒性高通量分析方法研究
  • 批准号:
    22306033
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
煤中甲烷微孔填充动力学模型及新的孔隙测定方法研究
  • 批准号:
    52374240
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于分子网络和高分辨质谱的水体新污染物筛查方法研究
  • 批准号:
    22306082
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基因表达调控新元件识别及其调控网络推断的智能方法研究
  • 批准号:
    62302148
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

学習方略の新たな指導枠組みと評価方法に基づく実験・実践的研究
基于新的学习策略教学框架和评估方法的实验和实践研究
  • 批准号:
    24K00487
  • 财政年份:
    2024
  • 资助金额:
    $ 69.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
国際的展開を目指す新たな方法によるホームレス・不安定居住の実態把握と支援策の研究
研究利用旨在国际扩张的新方法了解无家可归和不稳定住房的实际情况和支持措施
  • 批准号:
    23K01852
  • 财政年份:
    2023
  • 资助金额:
    $ 69.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
IgG4関連疾患の疾患特異的自己抗原の同定 -新たな診断方法と治療薬の開発-
IgG4相关疾病的疾病特异性自身抗原的鉴定 -开发新的诊断方法和治疗药物-
  • 批准号:
    23KK0164
  • 财政年份:
    2023
  • 资助金额:
    $ 69.38万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Contribution Measurement of Cited Literatures in Scholarly Papers: Towards a New Method for Literature Evaluation
学术论文中引用文献的贡献测量:迈向文献评价的新方法
  • 批准号:
    23K18506
  • 财政年份:
    2023
  • 资助金额:
    $ 69.38万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
「社会的処方」の法的研究-地域における医療と福祉の新しい連携モデルの構築のために
“社会处方”法制研究——构建社区医疗福利协作新模式
  • 批准号:
    22K01187
  • 财政年份:
    2022
  • 资助金额:
    $ 69.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了