Ultra energy efficient III-nitride/polymer hybrid white LEDs using nanotechnology

采用纳米技术的超节能 III 族氮化物/聚合物混合白光 LED

基本信息

  • 批准号:
    EP/H004602/1
  • 负责人:
  • 金额:
    $ 49.63万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

The last decade has seen dramatic advances in the development of III-nitride light emitters, whose emergence is significantly changing many aspects of our lives. Materials from the III-nitride family can emit light over the complete visible spectrum and a major part of the ultraviolet (UV) and are ideally suited for white light sources. Developments in solid-state lighting are occurring at pace and will lead to near-ultimate lighting sources, likely to be based on III-nitride materials. This will result in a fundamental change in the concept of illumination and has the potential to lead to massive savings in energy, estimated to be equivalent to $112 billion by the year 2020. Such increases in efficiency are increasingly important due to the growing world-wide energy-crisis and threat of global warming.Currently, there are three main approaches for the fabrication of white light emitting diodes (LEDs) needed for solid-state lighting: (1) a package of three LED chips each emitting at a different wavelength (red, green and blue, respectively); (2) a combination of a blue (460 nm) LED with a yellow phosphor pumped by blue light from the LED; (3) a single chip emitting UV light which is absorbed by three phosphors (red, green and blue) and reemitted as a broad spectrum of white light. The first method is ideal for achieving a true white light source, but it is extremely difficult to balance the electro-luminescence intensities of these different colours and there exist a number of fundamental challenges related to the different requirements of the individual LEDs. The performance of current UV-LEDs is far below blue-LEDs and presents a major limitation to the third route. As a result the blue LED+ phosphor approach is maintaining its strong lead for the fabrication of white LEDs with several commercial successes. However, the most promising commercially available white LEDs are based on blue epiwafers with the highest crystal quality, which are thus extremely expensive. This raises the price and thus limits their applications in general illumination. Further development of the technology is also still faced with problems, which are the driving force behind the new type of LED proposed here. We aim to develop a hybrid nanotechnology delivering a new type of ultra high energy efficient white-LED without need for the premium price blue epiwafers. The technologies to be hybridised are arrays of semiconductor nano-rods, with dimensions on the scale of 100s of nanometres, metal nano-particles and polymers. Building on our work demonstrating efficient light emission from conjugated polymers we will optimise these materials for converting blue light to yellow. The new polymers will be used to fill the spaces between nanorods prepared in GaN-based LED structures, maximising the contact between the blue light source and the yellow emitter. Blending silver nano-particles into the polymer will be used to further improve optical performance as a result of a coupling effect between the metal and semiconductor. Relatively thick capping layers usually limit the strength of this effect but the close contact between the polymer/metal blend and the side-walls of the nano-rods enables us to get close to the full benefit.This work will combine the existing strengths at the Sheffield in III-nitride device fabrication and characterisation of III-nitride emitters with those at Strathclyde in polymer chemistry, fundamental optical studies of III-nitrides and characterization of nanostructures, including metal nanoparticles and semiconductors. This combined effort aims to achieve an improved understanding of the fundamental issues in the optical emission processes mentioned above and to optimise fabrication processes of hybrid III-nitride/polymer white LEDs. It will lead to the demonstration of next generation white-LEDs suitable for replacement of conventional light sources in terms of cost and luminous efficacy.
在过去的十年里,III-氮化物发光二极管的发展取得了巨大的进步,它的出现正在显著地改变我们生活的许多方面。来自III-氮化物系列的材料可以在整个可见光光谱和大部分紫外线(UV)上发射光线,非常适合用作白色光源。固态照明的发展正在以PACE的速度进行,并将导致近乎最终的光源,很可能是基于III-氮化物材料。这将导致照明概念的根本变化,并有可能导致大量能源节约,预计到2020年将相当于112亿美元。由于日益严重的全球能源危机和全球变暖的威胁,这种效率的提高变得越来越重要。目前,制造固态照明所需的白色发光二极管(LED)的主要方法有三种:(1)由三个LED芯片组成的封装,每个芯片分别发射不同的波长(红、绿和蓝);(2)将蓝色(460 Nm)LED与由LED的蓝光泵浦的黄色荧光粉组合;(3)发出紫外光的单晶片,可被三种荧光粉(红、绿、蓝)吸收,并以广谱白光的形式重新发射。第一种方法是实现真正的白色光源的理想方法,但要平衡这些不同颜色的电致发光强度是极其困难的,并且存在与不同LED的不同要求相关的许多基本挑战。目前的UV-LED的性能远远低于蓝光LED,这是第三种路线的主要限制。因此,蓝色LED+荧光粉方法在制造白色LED方面保持着强大的领先地位,并取得了几次商业成功。然而,最有前景的商用白色LED是基于晶体质量最高的蓝色外延片,因此价格极其昂贵。这提高了价格,从而限制了它们在一般照明中的应用。该技术的进一步发展也面临着一些问题,这些问题是本文提出的新型LED背后的驱动力。我们的目标是开发一种混合纳米技术,提供一种新型的超高能效白色LED,而不需要溢价的蓝色外延片。将被混合的技术是半导体纳米棒阵列,其尺寸为100纳米、金属纳米颗粒和聚合物。在我们展示共轭聚合物高效发光的工作的基础上,我们将优化这些材料,将蓝光转换为黄色。这种新型聚合物将被用来填补GaN基LED结构中制备的纳米棒之间的空隙,最大限度地增加蓝色光源和黄色发射器之间的接触。由于金属和半导体之间的耦合效应,将纳米银颗粒掺入聚合物中将被用于进一步改善光学性能。相对较厚的盖层通常会限制这种效应的强度,但聚合物/金属混合物与纳米棒侧壁之间的紧密接触使我们能够接近完全的好处。这项工作将结合谢菲尔德III-氮化物器件制造和III-氮化物发射器的表征与Strathclyde在聚合物化学、III-氮化物的基础光学研究以及纳米结构(包括金属纳米颗粒和半导体)表征方面的现有优势。这一联合努力旨在更好地了解上述光学发射过程中的基本问题,并优化混合III-氮化物/聚合物白光LED的制造工艺。这将导致在成本和发光效率方面适合取代传统光源的下一代白光LED的展示。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polarized white light from hybrid organic/III-nitrides grating structures.
  • DOI:
    10.1038/srep39677
  • 发表时间:
    2017-01-03
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Athanasiou M;Smith RM;Ghataora S;Wang T
  • 通讯作者:
    Wang T
Greatly enhanced performance of InGaN/GaN nanorod light emitting diodes
  • DOI:
    10.1002/pssa.201100456
  • 发表时间:
    2012-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Bai;Q. Wang;T. Wang
  • 通讯作者:
    J. Bai;Q. Wang;T. Wang
Non-polar (11-20) GaN grown on sapphire with double overgrowth on micro-rod/stripe templates
Characterization of InGaN-based nanorod light emitting diodes with different indium compositions
  • DOI:
    10.1063/1.4725417
  • 发表时间:
    2012-06-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Bai, J.;Wang, Q.;Wang, T.
  • 通讯作者:
    Wang, T.
Fabrication of two-dimensional InGaN/GaN photonic crystal structure using a modified nanosphere lithography technique
  • DOI:
    10.1063/1.4805035
  • 发表时间:
    2013-05-13
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Athanasiou, M.;Kim, T. K.;Wang, T.
  • 通讯作者:
    Wang, T.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tao Wang其他文献

Numerical Simulation of Deep Excavation Considering Strain-Dependent Behavior of Soil: A Case Study of Tangluo Street Station of Nanjing Metro
考虑土体应变相关行为的深基坑数值模拟——以南京地铁塘洛街站为例
  • DOI:
    10.1007/s40999-022-00755-8
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Tao Wang;Tingting Deng;Yongfeng Deng;Xinbao Yu;Pu Zou;Zuhua Deng
  • 通讯作者:
    Zuhua Deng
Synthesis, structural diversities and properties of a series of transition metal-organic frameworks based on asymmetric dicarboxylic acid and N-donor auxiliary ligand
一系列基于不对称二元羧酸和N-供体辅助配体的过渡金属有机骨架材料的合成、结构多样性及性能
  • DOI:
    10.1016/j.inoche.2012.12.037
  • 发表时间:
    2013-04
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Wang Yan;Shen Song-Quan;Ju-Hong Zhou;Tao Wang;Su-Na Wang;Guang-Xiang Liu
  • 通讯作者:
    Guang-Xiang Liu
Preparation of Ce2Fe17N3–δ@FePO4 composite with excellent microwave absorption performance by reduction-diffusion (R/D) and phosphating processes
通过还原-扩散(R/D)和磷化工艺制备具有优异微波吸收性能的Ce2Fe17N3-δ@FePO4复合材料
  • DOI:
    10.1016/j.jre.2022.12.011
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zuying Zheng;Yunguo Ma;Hao Wang;Peng Wu;Hongbo Hao;Liang Qiao;Tao Wang;Zheng Yang;Fashen Li
  • 通讯作者:
    Fashen Li
Life history and adult dynamics of Bactrocera dorsalis in the citrus orchard of Nanchang, a subtropical area from China: implications for a control timeline
中国亚热带南昌柑橘园中橘小实蝇的生活史和成虫动态:对控制时间线的影响
  • DOI:
    10.2306/scienceasia1513-1874.2019.45.212
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Xiaozhen Li;Haiyan Yang;Tao Wang;Jianguo Wang;Hongyi Wei
  • 通讯作者:
    Hongyi Wei
Normal Incidence Mid-Infrared Photocurrent in AlGaN/GaN Quantum Well Infrared Photodetectors
AlGaN/GaN 量子阱红外光电探测器中的法向入射中红外光电流
  • DOI:
    10.12693/aphyspola.107.174
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Sherliker;M. Halsall;P. Harrison;V. Jovanovic;D. Indjin;Z. Ikonić;P. Parbrook;M. A. Whitehead;Tao Wang;P. Buckle;J. Phillips;D. Carder
  • 通讯作者:
    D. Carder

Tao Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tao Wang', 18)}}的其他基金

Monolithic on-chip integration of microscale laser diodes (uLDs) and electronics for micro-displays and visible light communications
用于微型显示器和可见光通信的微型激光二极管 (uLD) 和电子器件的单片片上集成
  • 批准号:
    EP/W003244/1
  • 财政年份:
    2022
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Research Grant
ERI: Dynamic Wireless Channel Pad: A Lightweight and Effective Security Design Towards Non-cryptographic IoT Confidentiality
ERI:动态无线通道垫:面向非加密物联网机密性的轻量级且有效的安全设计
  • 批准号:
    2139028
  • 财政年份:
    2022
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Standard Grant
Monolithic On-chip Integration of Electronics & Photonics Using III-nitrides for Telecoms
单片片上电子集成
  • 批准号:
    EP/T013001/1
  • 财政年份:
    2020
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Research Grant
Ultra-Stable High-Performance Single Nanolasers
超稳定高性能单纳米激光器
  • 批准号:
    EP/P006361/1
  • 财政年份:
    2017
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Research Grant
Advanced III-nitride materials for next generation UV emitters used in water purification, environmental protection and local network communication
用于水净化、环境保护和本地网络通信的下一代紫外线发射器的先进III族氮化物材料
  • 批准号:
    EP/M003132/1
  • 财政年份:
    2014
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Research Grant
Next generation white LEDs using hybrid inorganic/organic semiconductor nanostructures for general illumination and wireless communication
使用混合无机/有机半导体纳米结构的下一代白光 LED 用于一般照明和无线通信
  • 批准号:
    EP/L017024/1
  • 财政年份:
    2014
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Research Grant
GLOBAL-Promoting Research Partnership in Fabrication of Advanced III-nitride Optoelectronics With Ultra Energy Efficiency Using Nanotechnology
全球促进利用纳米技术制造具有超高能效的先进III族氮化物光电子器件的研究伙伴关系
  • 批准号:
    EP/K004220/1
  • 财政年份:
    2012
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Research Grant
Fabrication of first 337 nm laser diodes for biological applications
制造首款用于生物应用的 337 nm 激光二极管
  • 批准号:
    EP/F03363X/1
  • 财政年份:
    2008
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Research Grant
Growth, fabrication and physical properties of nitride quantum dot based optical devices: light emitting diodes, laser diodes and photodetectors
基于氮化物量子点的光学器件的生长、制造和物理特性:发光二极管、激光二极管和光电探测器
  • 批准号:
    EP/C543521/1
  • 财政年份:
    2006
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Research Grant

相似国自然基金

度量测度空间上基于狄氏型和p-energy型的热核理论研究
  • 批准号:
    QN25A010015
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于高性能纳米线的3D打印储能芯片制备与构效关系研究
  • 批准号:
    JCZRLH202500840
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
生物钟核受体Rev-erbα在缺血性卒中神经元能量代谢中的改善作用及机制研究
  • 批准号:
    82371332
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
脐带间充质干细胞微囊联合低能量冲击波治疗神经损伤性ED的机制研究
  • 批准号:
    82371631
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于慧眼-HXMT宽能段观测的X射线吸积脉冲星磁场研究
  • 批准号:
    12373051
  • 批准年份:
    2023
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
Grem2通过BMPR-Smad1/5/8-PGC1α通路调控线粒体能量代谢在糖尿病肾病足细胞损伤中的机制研究
  • 批准号:
    82370819
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
rhTβ4增强间充质干细胞调节T细胞代谢重塑治疗干眼的机制研究
  • 批准号:
    32000530
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
亚纳米单分子定位技术研究化学修饰对蛋白-膜相互作用的干预
  • 批准号:
    91753104
  • 批准年份:
    2017
  • 资助金额:
    70.0 万元
  • 项目类别:
    重大研究计划
基于扩展EnergyHub的综合能源系统通用建模、仿真及安全性分析理论研究
  • 批准号:
    51377117
  • 批准年份:
    2013
  • 资助金额:
    74.0 万元
  • 项目类别:
    面上项目
不定形系统的Jamming和玻璃化转变的数值和理论研究
  • 批准号:
    11074228
  • 批准年份:
    2010
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Designing Ultra-Energy-Efficient Intelligent Hardware with On-Chip Learning, Attention, and Inference
职业:设计具有片上学习、注意力和推理功能的超节能智能硬件
  • 批准号:
    2336012
  • 财政年份:
    2023
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Continuing Grant
SCC-CIVIC-FA Track A: Novel Fuel-Flexible Combustion to Enable Ultra-Clean and Efficient Waste-to-Renewable Energy in Changing Climate
SCC-CIVIC-FA 轨道 A:新型燃料灵活燃烧,在不断变化的气候中实现超清洁、高效的废物转化为可再生能源
  • 批准号:
    2322319
  • 财政年份:
    2023
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Standard Grant
SCC-CIVIC-PG Track A: Novel Fuel-Flexible Combustion to Enable Ultra-Clean and Efficient Waste-to-Renewable Energy in Changing Climate
SCC-CIVIC-PG 轨道 A:新型燃料灵活燃烧,在不断变化的气候中实现超清洁、高效的废物转化为可再生能源
  • 批准号:
    2228311
  • 财政年份:
    2022
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Standard Grant
SBIR Phase II: Ultra-Clear and Insulating Aerogel for Energy-Efficient Windows
SBIR 第二阶段:用于节能窗户的超透明隔热气凝胶
  • 批准号:
    2155248
  • 财政年份:
    2022
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Cooperative Agreement
NimbleAI - Ultra-Energy Efficient and Secure Neuromorphic Sensing and Processing at the Endpoint
NimbleAI - 端点的超节能且安全的神经形态传感和处理
  • 批准号:
    10039070
  • 财政年份:
    2022
  • 资助金额:
    $ 49.63万
  • 项目类别:
    EU-Funded
Ultra energy-efficient DNN accelerator based on non-product-sum-type arithmetic
基于非积和型算法的超节能DNN加速器
  • 批准号:
    22H03555
  • 财政年份:
    2022
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
NimblaAI: ULTRA-ENERGY EFFICIENT AND SECURE NEUROMORPHIC SENSING AND PROCESSING AT THE ENDPOINT
NimblaAI:端点的超节能且安全的神经形态传感和处理
  • 批准号:
    10039059
  • 财政年份:
    2022
  • 资助金额:
    $ 49.63万
  • 项目类别:
    EU-Funded
Toward Energy-Efficient and Ultra-Low Latency Wireless Networks: 5G and Beyond
迈向节能和超低延迟无线网络:5G 及其他
  • 批准号:
    RGPIN-2017-04705
  • 财政年份:
    2021
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Discovery Grants Program - Individual
A first-of-a-kind, ultra-low cost second life battery solution unlocking the mass-market for resource-efficient home energy storage
首创的超低成本二次寿命电池解决方案,打开资源节约型家庭储能的大众市场
  • 批准号:
    10007485
  • 财政年份:
    2021
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Collaborative R&D
Toward Energy-Efficient and Ultra-Low Latency Wireless Networks: 5G and Beyond
迈向节能和超低延迟无线网络:5G 及其他
  • 批准号:
    RGPIN-2017-04705
  • 财政年份:
    2020
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了