Search for non-Abelian quantal phases and statistics
搜索非阿贝尔量子相和统计数据
基本信息
- 批准号:EP/H017313/1
- 负责人:
- 金额:$ 15.75万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum statistics and the spin and symmetry of wavefunctions are central to a quantum mechanical understanding of the world. Since the dawn of quantum mechanics it has been known that statistics distinguishes fermions from bosons due to symmetry with respect to interchange of two identical particles. In three spatial dimensions there are only two possible symmetries: the wave function of bosons is symmetric under permutation of particles while for fermions the wavefunction is antisymmetric. Two-dimensional systems are qualitatively different and the wavefunction can acquire any phase factor owing to interchange of two quasiparticles. These anyonic quasiparticles obey fractional statistics and arise in the context of the fractional quantum Hall effect. Yet more exotic phases and statistics has been envisioned, in which quasiparticle states are degenerate and their state vectors are multiplied by a unitary matrix rather than a phase factor as a result of quasiparticle interchange. In such a non-Abelian many-body systems exchange of two particles changes the state of all the particles in the condensate. Such rigidity of the wavefunction has lead to the idea of a fault-tolerant quantum computer with qubits based on non-Abelian states.While theoretically non-Abelian statistics and non-Abelian quantal phases have been predicted in many systems, no experiment to date has confirmed the existence of states with non-Abelian statistics. The most promising candidate - the filling factor v = 5/2 quantum Hall state is yet to be shown to be a non-Abelian state. Unlike the non-Abelian statistics, the non-Abelian quantal phase can already be a property of a single-particle wavefunction. We propose to explore the non-Abelian quantal phase in two-dimensional hole gases with total angular momentum J = 3/2 heavy hole states. The envisaged experiments on coupled quantum rings promise to show non- Abelian many-body effects and lead to the discovery of this elusive new state of matter. The proposed research involves advanced material growth, nanofabrication, rf investigation of small energy scales and a deep understanding of holes interactions. The Semiconductor Physics group at the Cavendish Laboratory, Cambridge University, headed by Professor David Ritchie, is one of a few places in the word where such an ambitious goal of detecting non-Abelian phases can be achieved. The group pioneered the key enabling technologies, such as MBE growth of high quality two dimensional gases and low temperature rf techniques. Prof. Leonid Rokhinson from Purdue University, USA, will bring expertise of many years of investigation of holes in GaAs, development of heterostructures especially tailored for nanofabrication techniques, and recently developed strain control techniques.
量子统计和波函数的自旋和对称性是量子力学理解世界的核心。自量子力学诞生以来,人们就知道,统计学将费米子与玻色子区分开来是因为两个相同粒子交换的对称性。在三维空间中,只有两种可能的对称性:玻色子的波函数在粒子排列下是对称的,而费米子的波函数是反对称的。由于两个准粒子的交换,二维系统性质不同,波函数可以获得任意的相因子。这些非离子准粒子服从分数统计,并出现在分数量子霍尔效应的背景下。然而,更奇异的相位和统计已经被设想,其中准粒子状态是简并的,并且它们的状态向量乘以酉矩阵而不是作为准粒子交换的结果的相位因子。在这样一个非阿贝尔多体系统中,两个粒子的交换改变了凝聚态中所有粒子的状态。波函数的这种刚性导致了基于非阿贝尔态的量子比特容错量子计算机的想法。虽然理论上非阿贝尔统计和非阿贝尔量子相位在许多系统中已经被预测,但迄今为止还没有实验证实存在非阿贝尔统计的状态。最有希望的候选者-填充因子v = 5/2的量子霍尔态尚未被证明是非阿贝尔态。与非阿贝尔统计不同,非阿贝尔量子相位已经可以是单粒子波函数的一个属性。我们研究了二维空穴气体中的非阿贝尔量子相位,其中重子态的总角动量为J = 3/2。设想中的耦合量子环实验有望显示非阿贝尔多体效应,并导致发现这种难以捉摸的新物质状态。拟议的研究涉及先进的材料生长,纳米纤维,小能量尺度的射频研究和空穴相互作用的深入理解。剑桥大学卡文迪什实验室的半导体物理小组,由大卫里奇教授领导,是世界上少数几个可以实现探测非阿贝尔相的雄心勃勃的目标的地方之一。该集团率先推出了关键的使能技术,如高质量二维气体的分子束外延生长和低温射频技术。来自美国普渡大学的Leonid Rokhinson教授将带来多年来对GaAs中空穴的研究、特别为纳米纤维技术定制的异质结构的开发以及最近开发的应变控制技术的专业知识。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The fractional a.c. Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles
- DOI:10.1038/nphys2429
- 发表时间:2012-11-01
- 期刊:
- 影响因子:19.6
- 作者:Rokhinson, Leonid P.;Liu, Xinyu;Furdyna, Jacek K.
- 通讯作者:Furdyna, Jacek K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Ritchie其他文献
Time-Limited Ibrutinib and Tisagenlecleucel Is Highly Effective in the Treatment of Patients with Relapsed or Refractory Mantle Cell Lymphoma, Including Those with emTP53/em Mutated and Btki-Refractory Disease: First Report of the Tarmac Study
限时伊布替尼和替沙格仑赛在复发或难治性套细胞淋巴瘤患者的治疗中非常有效,包括那些具有 emTP53/em 突变和 Btki 难治性疾病的患者:Tarmac 研究的首次报告
- DOI:
10.1182/blood-2022-160459 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:23.100
- 作者:
Adrian Minson;Nada Hamad;Chan Y. Cheah;Constantine S. Tam;Piers Blombery;David A Westerman;Stephen Lade;David Ritchie;Rachel M Koldej;Mary Ann Anderson;Amit Khot;John F. Seymour;Molly Robertson;Imogen R Caldwell;Georgina L Ryland;Jing Xie;Huw Morgan;Michael Dickinson - 通讯作者:
Michael Dickinson
P332 Exploring the Landscape of Palliative Care for People with Non-Hodgkin’s Lymphoma: Do They Receive Quality End-of-Life Care?
- DOI:
10.1016/j.jpainsymman.2016.10.339 - 发表时间:
2016-12-01 - 期刊:
- 影响因子:
- 作者:
Anna Collins;Jodie Burchell;David Ritchie;Brian Le;Vijaya Sundararajan;Peter Hudson;Sue-Anne McLachlan;Meinir Krishnasamy;Jeremy Millar;David Currow;Linda Mileshkin;Jennifer Philip - 通讯作者:
Jennifer Philip
Effects of coolant supply arrangement on double wall cooling: Hot-side effusion performance and cold-side Nusselt numbers at different initial blowing ratios
- DOI:
10.1016/j.ijheatmasstransfer.2020.119808 - 发表时间:
2020-08-01 - 期刊:
- 影响因子:
- 作者:
Austin Click;Phil Ligrani;David Ritchie;Federico Liberatore;Rajeshriben Patel;Yin-Hsiang Ho - 通讯作者:
Yin-Hsiang Ho
Bortezomib added to high-dose melphalan as pre-transplant conditioning is safe in patients with heavily pre-treated multiple myeloma
在高剂量马法兰中添加硼替佐米作为移植前预处理对于接受过大量预处理的多发性骨髓瘤患者是安全的
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:4.8
- 作者:
Philip A Thompson;H. M. Prince;H. M. Prince;John F. Seymour;John F. Seymour;David Ritchie;David Ritchie;K. Stokes;K. Burbury;Max Wolf;S. Peinert;T. Joyce;Simon J. Harrison;Simon J. Harrison - 通讯作者:
Simon J. Harrison
The Concept of Shinyuu in Japan: A Replication of and Comparison to Cole and Bradac’s Study on U.S. Friendship
日本的新游概念:科尔和布拉达克美国友谊研究的复制与比较
- DOI:
10.1177/02654075030205001 - 发表时间:
2003 - 期刊:
- 影响因子:2.8
- 作者:
Eriko Maeda;David Ritchie - 通讯作者:
David Ritchie
David Ritchie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Ritchie', 18)}}的其他基金
Fibre Wavelength Quantum Networks (FQNet)
光纤波长量子网络 (FQNet)
- 批准号:
EP/R02216X/1 - 财政年份:2017
- 资助金额:
$ 15.75万 - 项目类别:
Research Grant
Fibre wavelength quantum light sources
光纤波长量子光源
- 批准号:
EP/M508263/1 - 财政年份:2015
- 资助金额:
$ 15.75万 - 项目类别:
Research Grant
Quantum Cascade amplifiers for high power Terahertz time domain spectrometry
用于高功率太赫兹时域光谱测量的量子级联放大器
- 批准号:
EP/J007803/1 - 财政年份:2012
- 资助金额:
$ 15.75万 - 项目类别:
Research Grant
Spintronic device physics in Si/Ge Heterostructures.
硅/锗异质结构中的自旋电子器件物理。
- 批准号:
EP/J003638/1 - 财政年份:2012
- 资助金额:
$ 15.75万 - 项目类别:
Research Grant
Electron-hole bilayers: Excitonic phases and collective modes
电子空穴双层:激子相和集体模式
- 批准号:
EP/H017720/1 - 财政年份:2010
- 资助金额:
$ 15.75万 - 项目类别:
Research Grant
Deterministic single quantum dot nano-sources of entangled photon pairs (NanoEPR)
纠缠光子对的确定性单量子点纳米源(NanoEPR)
- 批准号:
EP/E058019/1 - 财政年份:2007
- 资助金额:
$ 15.75万 - 项目类别:
Research Grant
Mode-locking of THz quantum cascade lasers
太赫兹量子级联激光器的锁模
- 批准号:
EP/D025532/1 - 财政年份:2006
- 资助金额:
$ 15.75万 - 项目类别:
Research Grant
相似国自然基金
基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
- 批准号:82372016
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
Non-CG DNA甲基化平衡大豆产量和SMV抗性的分子机制
- 批准号:32301796
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
long non-coding RNA(lncRNA)-activatedby TGF-β(lncRNA-ATB)通过成纤维细胞影响糖尿病创面愈合的机制研究
- 批准号:LQ23H150003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
G蛋白偶联受体GPR110调控Lp-PLA2抑制非酒精性脂肪性肝炎的作用及机制研究
- 批准号:82370865
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
染色体不稳定性调控肺癌non-shedding状态及其生物学意义探索研究
- 批准号:82303936
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
犬尿氨酸酶KYNU参与非酒精性脂肪肝进展为肝纤维化的作用和机制研究
- 批准号:82370874
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
变分法在双临界Hénon方程和障碍系统中的应用
- 批准号:12301258
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
BTK抑制剂下调IL-17分泌增强CD20mb对Non-GCB型弥漫大B细胞淋巴瘤敏感性
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Non-TAL效应子NUDX4通过Nudix水解酶活性调控水稻白叶枯病菌致病性的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
一种新non-Gal抗原CYP3A29的鉴定及其在猪-猕猴异种肾移植体液排斥反应中的作用
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Non-Abelian Hodge Theory and Transcendence
非阿贝尔霍奇理论与超越
- 批准号:
2401383 - 财政年份:2024
- 资助金额:
$ 15.75万 - 项目类别:
Standard Grant
CAREER: Novel platforms for topology and non-Fermi liquids: From projected topological branes to non-Abelian and fractional materials
职业:拓扑和非费米液体的新颖平台:从投影拓扑膜到非阿贝尔和分数材料
- 批准号:
2238679 - 财政年份:2023
- 资助金额:
$ 15.75万 - 项目类别:
Continuing Grant
Harmonic Maps, Geometric Rigidity, and Non-Abelian Hodge Theory
调和映射、几何刚性和非阿贝尔霍奇理论
- 批准号:
2304697 - 财政年份:2023
- 资助金额:
$ 15.75万 - 项目类别:
Standard Grant
Non-abelian Structures in String Theory
弦论中的非阿贝尔结构
- 批准号:
SAPIN-2016-00032 - 财政年份:2022
- 资助金额:
$ 15.75万 - 项目类别:
Subatomic Physics Envelope - Individual
Non-abelian Structures in String Theory
弦论中的非阿贝尔结构
- 批准号:
SAPIN-2016-00032 - 财政年份:2021
- 资助金额:
$ 15.75万 - 项目类别:
Subatomic Physics Envelope - Individual
Controlled Creation and Dynamics of non-Abelian Vortices and Topological Processes in spinor Bose-Einstein condensates
旋量玻色-爱因斯坦凝聚中非阿贝尔涡旋和拓扑过程的受控产生和动力学
- 批准号:
EP/V03832X/1 - 财政年份:2021
- 资助金额:
$ 15.75万 - 项目类别:
Research Grant
Topological superconductivity and high order non-abelian excitations
拓扑超导和高阶非阿贝尔激发
- 批准号:
2005092 - 财政年份:2020
- 资助金额:
$ 15.75万 - 项目类别:
Continuing Grant
Non-abelian Structures in String Theory
弦论中的非阿贝尔结构
- 批准号:
SAPIN-2016-00032 - 财政年份:2019
- 资助金额:
$ 15.75万 - 项目类别:
Subatomic Physics Envelope - Individual
Electrical and optical creation and control of non-Abelian anyons
非阿贝尔任意子的电学和光学创建和控制
- 批准号:
19H05610 - 财政年份:2019
- 资助金额:
$ 15.75万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
The construction of new research foundation for automorphic forms based on Fourier expansions in non-abelian directions
基于非交换方向傅里叶展开的自同构新研究基础的构建
- 批准号:
19K03431 - 财政年份:2019
- 资助金额:
$ 15.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




