Analysis: from theory to applications

分析:从理论到应用

基本信息

  • 批准号:
    EP/H023348/1
  • 负责人:
  • 金额:
    $ 505.22万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Training Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Mathematical analysis is at the nexus of contemporary mathematics and its applications. It is the branch of mathematics most directly connected to the activity of describing aspects of the world in quantitative terms. Problems originating in science, engineering and industry typically reach mathematics by way of analysis, while new mathematical ideas, methodologies, techniques and algorithms, more often than not, enter application areas through analysis. Thus, the health of analysis, which provides the conceptual framework and technology and thereby underpins the majority of novel applications of mathematics in science, engineering and industry, and the provision of quality personnel in this subject are of key importance not just to the future of UK mathematics but to the UK science base in its entirety, indeed to the government strategy in fostering economic growth through scientific development and innovation.There is a critical need for knowledge transfer from specialized expert mathematical communities in analysis (partial differential equations, harmonic analysis, stochastic analysis) into the applied modelling community. This knowledge transfer is presently a recognized UK weakness. We believe that the reverse transfer, by which work on mathematical fundamentals is stimulated and focussed by modelling challenges in applications, is also a vital ingredient of a healthy mathematical community. Cambridge analysis is not confined to one specialized area but includes internationally strong individuals and groups in PDEs for mathematical physics, applications of PDEs, stochastic analysis, computational analysis, together with an unrivalled tradition in applied mathematical modelling. The ongoing realignment and interconnection of these groups gives an excellent environment in which to establish a Centre for Doctoral Training in analysis, which will enable doctoral students to experience the power and excitement of the mathematical modelling process from beginning to end, that is, from a physical, biological or industrial problem not yet formulated in mathematical terms, to a mathematical model, understood by rigorous theory and efficient computation, and then to see the results used for effective prediction, control or scientific understanding.The CDT will offer an enhanced graduate programme in pure and applied analysis. The aim is to create a distinctive team of young analysts who see the scope of their work as ranging from leading-edge theory to leading-edge applications. This is difficult within the standard three-year PhD framework. Through an initial period of richer training integrated with wider research experience, allowed by the CDT, students will develop a mixture of pure, stochastic, applied and computational skills, which will be a highly effective preparation for the specialized research required for a PhD. Continuing training activities throughout the duration of the CDT programme will encourage breadth of interest and approach. The CDT will engage with the Cambridge research environment, both within the University and outside in the research institutes and other enterprises which form the Cambridge phenomenon, building on existing links, to make a strong connection between the leading edge of core analysis and diverse and important applications areas.
数学分析是当代数学及其应用的结合点。它是数学的一个分支,与用数量描述世界各方面的活动有最直接的联系。源于科学、工程和工业的问题通常通过分析达到数学,而新的数学思想、方法论、技术和算法往往通过分析进入应用领域。因此,提供概念框架和技术,从而支撑数学在科学、工程和工业中的大多数新应用的分析的健康,以及该学科高素质人员的提供,不仅对英国数学的未来,而且对整个英国科学基础,甚至对政府通过科学发展和创新促进经济增长的战略至关重要。迫切需要将分析(偏微分方程式、调和分析、随机分析)方面的专业数学社区的知识转移到应用建模社区。这种知识转移目前是英国公认的弱点。我们认为,反向迁移也是一个健康的数学社区的重要组成部分。通过反向迁移,数学基础方面的工作受到激励,并通过应用程序中的建模挑战得到关注。剑桥大学的分析并不局限于一个专业领域,而是包括在数学物理、偏微分方程的应用、随机分析、计算分析以及在应用数学建模方面无与伦比的传统的PDE中具有国际实力的个人和团体。这些小组的不断调整和相互联系为建立分析博士培训中心提供了一个极好的环境,这将使博士生从头到尾体验数学建模过程的力量和兴奋,即从一个尚未用数学术语表述的物理、生物或工业问题,到一个被严格理论和有效计算理解的数学模型,然后看到用于有效预测、控制或科学理解的结果。CDT将提供一个增强的纯粹和应用分析研究生课程。其目的是打造一支由年轻分析师组成的独特团队,他们认为自己的工作范围从尖端理论到尖端应用。在标准的三年制博士学位框架内,这是很困难的。通过CDT允许的更丰富的培训和更广泛的研究经验相结合的初始阶段,学生将发展纯、随机、应用和计算技能的混合,这将是博士所需的专业研究的高效准备。在整个CDT方案期间继续开展培训活动将鼓励兴趣的广度和方法。CDT将在现有联系的基础上,与剑桥大学内外的研究机构和其他形成剑桥现象的企业的研究环境进行接触,在核心分析的前沿与多样化和重要的应用领域之间建立强有力的联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Norris其他文献

938. Ceramide May Have a Role in Sensitizing ACHN Renal Cancer Cells (RCC) to Fas Induced Apoptosis
  • DOI:
    10.1016/j.ymthe.2006.08.1029
  • 发表时间:
    2006-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ahmed M. El-Zawahry;David Holman;Xiang Liu;Saeed ElOjeimy;Sunil Sudarshan;Nabil K. Bissada;Hashim Rashwan;Zdzislaw Szulc;Alicjia Bielwaska;Thomas Keane;Yusuf Hannun;James Norris
  • 通讯作者:
    James Norris
OA57 The digitalisation of dying, loss and grief on social media channels
OA57 社交媒体渠道上死亡、失落和悲伤的数字化
A novel quasi-dynamic guidance law for a dynamic dual-spin projectile with non-conventional, asymmetric roll constraints
具有非常规、不对称滚转约束的动态双自旋弹丸的新型准动态制导律
405: Lysosomotropic Ceramide Analogue LCL-204, Acid Ceramidase (AC) Inhibitor, a Potential Novel Chemotherapy for Prostate Cancer (PCA)
  • DOI:
    10.1016/s0022-5347(18)34658-5
  • 发表时间:
    2005-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ahmed M. El-Zawahry;David Holman;Xiang Lue;Saeed Elojeimy;Nabil Bissada;Hashim Rashwan;Alicjia Bielwaska;Yusuf Hannun;James Norris
  • 通讯作者:
    James Norris
CamBlend: an object focused collaboration tool
CamBlend:以对象为中心的协作工具

James Norris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Norris', 18)}}的其他基金

Acquisition of Mass Spectrometers and X-ray Diffractometer
购置质谱仪和 X 射线衍射仪
  • 批准号:
    9977857
  • 财政年份:
    1999
  • 资助金额:
    $ 505.22万
  • 项目类别:
    Standard Grant
Purchase of Integrated Fluorescence, Polarized Fluorescence and Brewster Angle Microscope/Langmuir Trough Instrumentation for Studies of Lipid-Protein Interactions at Interfaces
购买集成荧光、偏光荧光和布鲁斯特角显微镜/朗缪尔槽仪器用于研究界面处的脂质-蛋白质相互作用
  • 批准号:
    9816513
  • 财政年份:
    1999
  • 资助金额:
    $ 505.22万
  • 项目类别:
    Standard Grant
Purchase of Surface Plasmon Resonance Instrumentation for Studies of Biomolecular Recognition at Interfaces
购买表面等离子共振仪器用于界面生物分子识别研究
  • 批准号:
    9709039
  • 财政年份:
    1997
  • 资助金额:
    $ 505.22万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Fibered纽结的自同胚、Floer同调与4维亏格
  • 批准号:
    12301086
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
  • 批准号:
    82371997
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
  • 批准号:
    LY21E080004
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
高阶微分方程的周期解及多重性
  • 批准号:
    11501240
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
四维流形上的有限群作用与奇异光滑结构
  • 批准号:
    11301334
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Applications of functional analysis to the theory of the zeta function.
泛函分析在 zeta 函数理论中的应用。
  • 批准号:
    23K03050
  • 财政年份:
    2023
  • 资助金额:
    $ 505.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of set theory to abstract harmonic analysis
集合论在抽象调和分析中的应用
  • 批准号:
    RGPIN-2017-05712
  • 财政年份:
    2022
  • 资助金额:
    $ 505.22万
  • 项目类别:
    Discovery Grants Program - Individual
Collaboration Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
  • 批准号:
    2133851
  • 财政年份:
    2022
  • 资助金额:
    $ 505.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
  • 批准号:
    2133822
  • 财政年份:
    2022
  • 资助金额:
    $ 505.22万
  • 项目类别:
    Standard Grant
Variational Analysis: Theory, Algorithms, and Applications
变分分析:理论、算法和应用
  • 批准号:
    2204519
  • 财政年份:
    2022
  • 资助金额:
    $ 505.22万
  • 项目类别:
    Standard Grant
Time-frequency analysis in deep learning framework: theory, computation and applications
深度学习框架中的时频分析:理论、计算和应用
  • 批准号:
    RGPIN-2021-03657
  • 财政年份:
    2022
  • 资助金额:
    $ 505.22万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and numerical analysis for quantum wave equations: from theory to applications
量子波动方程的数学和数值分析:从理论到应用
  • 批准号:
    RGPIN-2018-05321
  • 财政年份:
    2022
  • 资助金额:
    $ 505.22万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
  • 批准号:
    2133861
  • 财政年份:
    2022
  • 资助金额:
    $ 505.22万
  • 项目类别:
    Standard Grant
Noncommutative Analysis with Applications to Quantum Information Theory
非交换分析及其在量子信息论中的应用
  • 批准号:
    2154903
  • 财政年份:
    2022
  • 资助金额:
    $ 505.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
  • 批准号:
    2133806
  • 财政年份:
    2022
  • 资助金额:
    $ 505.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了