Coherent Optical and Microwave Physics for Atomic-Scale Spintronics in Silicon (COMPASSS)
硅原子级自旋电子学的相干光学和微波物理 (COMPASSS)
基本信息
- 批准号:EP/H026622/1
- 负责人:
- 金额:$ 778.13万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Silicon and the technology developed with it has revolutionised industry, entertainment and communication, and there is always interest in new ways to remember and process information. The challenge is to find methods of encoding information in the smallest possible volume and manipulating it in the most complex ways with the lowest energy cost and the highest speed. In this programme, we shall develop methods for encoding information in a single electron, orbiting a single impurity atom in a silicon crystal. We shall develop the technology for manipulating that information with terahertz speed by its magnetic connection with adjacent impurity electrons.At the same time our work will produce a new way of studying atomic physics, which, at its most exciting, requires that single atoms are trapped in a vacuum by complex combinations of laser beams and electro-magnetic fields. Recent interest in atomic physics has centred around the detailed control of quantum states in atoms. Quantum physics allows an electron to be in two places or two states at once, and also allows two electrons to be in a single entangled state where examination of one electron gives up full knowledge of the other. Experiments with pulsed visible lasers on atoms trapped in vacuum have demonstrated new phenomena based on this principle. Similar physics applies to the nucleus, and has resulted in the technology of NMR and MRI. Impurities in crystals, if they have substituted one of the host atoms, can sometimes be thought of just in terms of their extra charge. For example, phosphorus impurities in silicon crystals look like silicon atoms with an extra proton in the nucleus and an extra electron. The extra electron orbits around the extra proton charge in a very similar way to the orbit of the electron around a proton in a hydrogen atom. The energies of the allowed orbits follow the same pattern (the Rydberg series) except that the transitions are in the far-infrared, as opposed to the visible/X-rays for hydrogen. Our programme will extend the analogy between the atom trap and the impurity in a crystal. For example we will demonstrate that electrons can be put into two states at once - an electronic version of the trigger that caused Schrodinger's famous cat to be both alive and dead at the same time-and that they can live in this superposition for long times. Recently, atomic physicists have been trying to minaturise their traps using silicon technology to manipulate the atoms in free space just above an atom chip . In a sense, we are working on a similar problem with the atoms held just below the surface instead of just above it. This has the advantage that the impurities are permanently fixed, that complex and new molecule states can be made with adjacent impurities, and that we can take full advantage of the processing technologies in the world's best developed material. The experiments are all enabled by the Free-Electron Laser FELIX facility near Utrecht. This kind of laser (which does not yet exist in the UK) is analogous to the pulsed visible lasers used for the atomic physics experiments, but gives out far-infrared pulses suitable for impurity atoms in silicon. Our proposal takes advantage of the fact that FELIX provides very high power, very short pulsed light that is coherent and tunable. The magnetic interactions between adjacent impurity electrons will be produced by exciting them with FELIX, but to measure the resulting changes we need microwave pulses and a magnet to perform electron paramagnetic resonance (EPR). We will install an EPR spectrometer at FELIX for this purpose. The equipment will also have enormous potential for applications in biology, since EPR is used extensively for measuring the configuration of large bio-molecules, while far-infrared laser pulses can induce controlled changes in conformation. Although we will concentrate on the atomic physics, a spin-out programme in biology will result.
硅和与它一起发展的技术已经彻底改变了工业,娱乐和通信,人们总是对记忆和处理信息的新方法感兴趣。挑战在于找到以尽可能小的体积编码信息的方法,并以最复杂的方式以最低的能源成本和最高的速度处理信息。在这个计划中,我们将开发出在硅晶体中围绕单个杂质原子运行的单个电子中编码信息的方法。我们将开发出一种技术,通过它与相邻杂质电子的磁连接,以太赫兹的速度操纵这些信息。同时,我们的工作将产生一种研究原子物理学的新方法,这种方法最令人兴奋的是,需要通过激光束和电磁场的复杂组合将单个原子捕获在真空中。最近对原子物理学的兴趣集中在对原子中量子态的详细控制上。量子物理学允许一个电子同时处于两个位置或两种状态,也允许两个电子处于一个纠缠态,其中一个电子的检查放弃了另一个电子的全部知识。用脉冲可见光激光对真空中被囚禁的原子进行的实验已经证明了基于这一原理的新现象。类似的物理学也适用于原子核,并产生了核磁共振和核磁共振成像技术。晶体中的杂质,如果取代了其中一个主原子,有时可以仅仅根据它们的额外电荷来考虑。例如,硅晶体中的磷杂质看起来就像硅原子,核中有一个额外的质子和一个额外的电子,额外的电子围绕额外的质子电荷运行,其方式与氢原子中电子围绕质子运行的方式非常相似。允许轨道的能量遵循相同的模式(里德伯系列),除了跃迁是在远红外线,而不是氢的可见光/X射线。我们的计划将扩展原子陷阱和晶体中杂质之间的类比。例如,我们将证明电子可以同时处于两种状态--一种电子版本的触发器,导致薛定谔著名的猫同时活着和死了--而且它们可以在这种叠加状态下生活很长时间。最近,原子物理学家一直在尝试使用硅技术来操纵原子芯片上方自由空间中的原子,从而使他们的陷阱小型化。从某种意义上说,我们正在研究一个类似的问题,即原子被固定在表面之下而不是表面之上,这样做的好处是杂质被永久固定,复杂的和新的分子状态可以用相邻的杂质制造出来,我们可以充分利用世界上最先进的材料的加工技术。这些实验都是由乌得勒支附近的自由电子激光器FELIX设施实现的。这种激光器(在英国尚不存在)类似于用于原子物理实验的脉冲可见光激光器,但发出适合硅中杂质原子的远红外脉冲。我们的提议利用了FELIX提供非常高功率、非常短的相干和可调谐脉冲光的事实。相邻杂质电子之间的磁相互作用将通过用FELIX激发它们来产生,但是为了测量由此产生的变化,我们需要微波脉冲和磁体来执行电子顺磁共振(EPR)。为此,我们将在FELIX安装一台EPR光谱仪。该设备在生物学应用方面也将具有巨大的潜力,因为EPR被广泛用于测量大生物分子的构型,而远红外激光脉冲可以诱导构象的受控变化。虽然我们将集中于原子物理学,但也会产生一个生物学的衍生项目。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetic anisotropy of single Mn acceptors in GaAs in an external magnetic field
GaAs 中单个 Mn 受主在外磁场中的磁各向异性
- DOI:10.1103/physrevb.88.205203
- 发表时间:2013
- 期刊:
- 影响因子:3.7
- 作者:Bozkurt M
- 通讯作者:Bozkurt M
Picosecond dynamics of a silicon donor based terahertz detector device
基于硅供体的太赫兹探测器装置的皮秒动力学
- DOI:10.1063/1.4890526
- 发表时间:2014-07-14
- 期刊:
- 影响因子:4
- 作者:Bowyer, Ellis T.;Villis, B. J.;Yu, Xiaomei
- 通讯作者:Yu, Xiaomei
Si atom adsorption and diffusion on Si(110)- ( 1 × 1 ) and ( 2 × 1 )
Si原子在Si(110)- ( 1 × 1 ) 和( 2 × 1 ) 上的吸附和扩散
- DOI:10.1103/physrevb.81.165320
- 发表时间:2010
- 期刊:
- 影响因子:3.7
- 作者:Brázdová V
- 通讯作者:Brázdová V
Scalable patterning of one-dimensional dangling bond rows on hydrogenated Si(001).
- DOI:10.1021/nn4010236
- 发表时间:2013-04
- 期刊:
- 影响因子:17.1
- 作者:F. Bianco;D. Bowler;J. Owen;S. Köster;M. Longobardi;C. Renner
- 通讯作者:F. Bianco;D. Bowler;J. Owen;S. Köster;M. Longobardi;C. Renner
H atom adsorption and diffusion on Si(110)-(1×1) and (2×1) surfaces.
H原子在Si(110)-(1×1)和(2×1)表面上的吸附和扩散。
- DOI:10.1039/c1cp20108e
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Brázdová V
- 通讯作者:Brázdová V
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benedict Murdin其他文献
Benedict Murdin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benedict Murdin', 18)}}的其他基金
UK director of the Felix partnership
Felix 合伙企业英国总监
- 批准号:
EP/X020452/1 - 财政年份:2023
- 资助金额:
$ 778.13万 - 项目类别:
Research Grant
Atomically Deterministic Doping and Readout For Semiconductor Solotronics (ADDRFSS)
半导体 Solotronics 的原子确定性掺杂和读出 (ADDRFSS)
- 批准号:
EP/M009564/1 - 财政年份:2015
- 资助金额:
$ 778.13万 - 项目类别:
Research Grant
OPTICAL ORIENTATION OF SPINS IN SEMICONDUCTORS USING THE FELIX AND FELBE FREE-ELECTRON LASER FACILITIES
使用 FELIX 和 FELBE 自由电子激光设备对半导体中的自旋进行光学定向
- 批准号:
EP/F021836/1 - 财政年份:2007
- 资助金额:
$ 778.13万 - 项目类别:
Research Grant
相似海外基金
ExpandQISE: Track 2: Expanding Quantum Research and Education at Winston-Salem State University with Research on Hybrid Microwave-Optical Quantum Devices
ExpandQISE:轨道 2:通过混合微波光量子器件的研究扩大温斯顿塞勒姆州立大学的量子研究和教育
- 批准号:
2329017 - 财政年份:2023
- 资助金额:
$ 778.13万 - 项目类别:
Continuing Grant
Highly Efficient Magnon-Mediated Microwave-to-Optical Converter Using a Disk-shaped Ferromagnetic Insulator
使用盘形铁磁绝缘体的高效磁振子介导微波光转换器
- 批准号:
23KJ1209 - 财政年份:2023
- 资助金额:
$ 778.13万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Microwave to optical quantum transducer using mechanical resonators
使用机械谐振器的微波到光学量子传感器
- 批准号:
576636-2022 - 财政年份:2022
- 资助金额:
$ 778.13万 - 项目类别:
Alliance Grants
Microwave to Optical quantum transduction.
微波到光量子转导。
- 批准号:
2742314 - 财政年份:2022
- 资助金额:
$ 778.13万 - 项目类别:
Studentship
Photonic-phononic integrated circuits for (quantum) microwave to optical signal transduction
用于(量子)微波到光信号转换的光子-声子集成电路
- 批准号:
2765135 - 财政年份:2022
- 资助金额:
$ 778.13万 - 项目类别:
Studentship
Efficiently converting between optical and microwave photons using nano-photonics
使用纳米光子学在光学和微波光子之间进行高效转换
- 批准号:
580744-2022 - 财政年份:2022
- 资助金额:
$ 778.13万 - 项目类别:
Alliance Grants
Silicon photonics: enabling optical and microwave signal processing for broadband communications beyond the next decade
硅光子学:为未来十年的宽带通信提供光学和微波信号处理
- 批准号:
RGPIN-2015-04386 - 财政年份:2022
- 资助金额:
$ 778.13万 - 项目类别:
Discovery Grants Program - Individual
Photonic sources of pristine optical and microwave carriers
原始光学和微波载体的光子源
- 批准号:
RGPIN-2020-04494 - 财政年份:2022
- 资助金额:
$ 778.13万 - 项目类别:
Discovery Grants Program - Individual
Optical measurement of tissue conductivity in microwave range with cell-level resolution
微波范围内组织电导率的光学测量,具有细胞级分辨率
- 批准号:
22K14299 - 财政年份:2022
- 资助金额:
$ 778.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Silicon photonics: enabling optical and microwave signal processing for broadband communications beyond the next decade
硅光子学:为未来十年的宽带通信提供光学和微波信号处理
- 批准号:
RGPIN-2015-04386 - 财政年份:2021
- 资助金额:
$ 778.13万 - 项目类别:
Discovery Grants Program - Individual