Ultrastable targeted multifunctional hybrid nanomaterials for long-term stem cell tracking
用于长期干细胞追踪的超稳定靶向多功能混合纳米材料
基本信息
- 批准号:EP/H046143/1
- 负责人:
- 金额:$ 197.21万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Stem cell science is beginning to realise its potential, with many patients now benefiting from novel stem cell therapies, usually involving transplantation of the patient's own bone marrow-derived stem cells. However, to make further progress in stem cell medicine so that more patients can benefit from these pioneering therapies, technological developments are required so that the behaviour of the stem cells can be closely monitored following transplantation. Stem cell monitoring is crucial, because, if the cells migrate to other organs and tissues besides the target organ, they could cause serious health problems for the patient. Apart from these important safety issues, stem cell monitoring is also necessary to help us understand how the cells mediate their positive effects. In this project, we aim to develop the technology to monitor stem cells using a non-invasive method called magnetic resonance imaging (MRI) that will not cause harm to the patient. The technology we propose is based on tracking superparamagnetic iron oxide nanoparticles, or 'SPIONs'. The main advantage of SPIONs is that, because of their nanoscale dimensions, they can be easily introduced into cells without detrimental side effects. Furthermore, because iron is a natural substance in the human body and indeed an important nutrient, as it is an essential component of the oxygen-carryng molecule, haemoglobin, it is unlikely to cause any harm to patients and iron oxides have previously been established to be biocompatible.A major obstacle that currently prevents the use of SPIONs for stem cell tracking is that in most cases they are not retained by the stem cells for more than a few weeks. Therapeutic or adverse effects of the stem cells would potentially manifest well beyond two weeks and, therefore, there is a strong need for a step change technology enabling cell tracking for much longer periods following transplantation. One of the reasons why cellular retention of SPIONs is so poor is that upon entry into the cells, the SPIONs become localised in a cellular compartment called the endosome, which due to its acid environment, causes the SPIONs to degrade. A further reason is that the cells use a process called 'retro-endocytosis' to actively remove the contents of endosomes back into the extracellular space. This project addresses the challenge in an interdisciplinary collaboration between physical scientists and stem cell biologists. We will design and chemically synthesise novel coatings for the SPIONs that will protect them from degradation and prevent them from being retro-endocytosed. To identify the most effective coatings, we will use a new imaging technology developed by our group that allows us to monitor the retention time of the SPIONs within single cells in a culture dish. In the final stages of the project we will select the most promising SPIONs to label mouse bone marrow-derived stem cells, which are known to promote recovery from kidney damage. These labelled stem cells will then be transplanted into mice that have damaged kidneys, and we will use MRI to monitor the behaviour of the stem cells over a prolonged time course.We predict that the novel SPIONs generated during the course of this project will make a significant impact on our ability to track stem cells in the long-term (several months) following transplantation. Although bone marrow-derived stem cells are the focus of the current project, we anticipate that the novel SPIONs will be of use to the wider stem cell community, due to their adaptability for labelling other clinically relevant stem cell types, such as embryonic stem cells, which are expected to enter clinical trials in the UK next year for the treatment of age-related macular degeneration. Furthermore, the SPIONs could be used to label various stem cells types that have potential for the treatment of conditions such as Parkinson's Disease, Diabetes and Heart Disease.
干细胞科学开始认识到其潜力,许多患者现在受益于新型干细胞疗法,通常涉及患者自身骨髓干细胞的移植。然而,为了在干细胞医学方面取得进一步进展,使更多患者能够从这些开创性疗法中受益,需要技术发展,以便能够在移植后密切监测干细胞的行为。干细胞监测至关重要,因为如果细胞迁移到目标器官以外的其他器官和组织,可能会给患者带来严重的健康问题。除了这些重要的安全问题之外,干细胞监测也有必要帮助我们了解细胞如何介导其积极作用。在这个项目中,我们的目标是开发一种技术,使用一种称为磁共振成像(MRI)的非侵入性方法来监测干细胞,这种方法不会对患者造成伤害。我们提出的技术基于跟踪超顺磁性氧化铁纳米粒子,或“SPION”。 SPION 的主要优点是,由于其纳米级尺寸,它们可以很容易地引入细胞中,而不会产生有害的副作用。此外,由于铁是人体内的天然物质,而且确实是一种重要的营养物质,因为它是携氧分子血红蛋白的重要组成部分,因此不太可能对患者造成任何伤害,而且氧化铁此前已被证实具有生物相容性。目前阻止使用 SPION 进行干细胞追踪的一个主要障碍是,在大多数情况下,它们不会被干细胞保留超过几周。干细胞的治疗或副作用可能会在两周后显现出来,因此,迫切需要一种阶跃改变技术,能够在移植后更长时间地进行细胞跟踪。 SPION 的细胞保留如此差的原因之一是,在进入细胞后,SPION 定位在称为内体的细胞区室中,由于其酸性环境,导致 SPION 降解。另一个原因是细胞使用一种称为“逆转录内吞作用”的过程来主动将内体的内容物移回细胞外空间。该项目解决了物理科学家和干细胞生物学家之间跨学科合作的挑战。我们将为 SPION 设计和化学合成新型涂层,以保护它们不被降解并防止它们被逆内吞。为了确定最有效的涂层,我们将使用我们小组开发的新成像技术,该技术使我们能够监测培养皿中单个细胞内 SPION 的保留时间。在该项目的最后阶段,我们将选择最有前途的 SPION 来标记小鼠骨髓干细胞,众所周知,这些干细胞可以促进肾脏损伤的恢复。然后,这些标记的干细胞将被移植到肾脏受损的小鼠体内,我们将使用 MRI 来长期监测干细胞的行为。我们预测,在该项目过程中产生的新型 SPION 将对我们在移植后长期(几个月)追踪干细胞的能力产生重大影响。尽管骨髓干细胞是当前项目的重点,但我们预计新型 SPION 将用于更广泛的干细胞群体,因为它们能够标记其他临床相关干细胞类型,例如胚胎干细胞,预计明年将在英国进入临床试验,用于治疗年龄相关性黄斑变性。此外,SPION 可用于标记具有治疗帕金森病、糖尿病和心脏病等疾病潜力的各种干细胞类型。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multimodal stem cell imaging and tracking
多模式干细胞成像和追踪
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Ashraf Sumaira
- 通讯作者:Ashraf Sumaira
Poly[2-(methacryloyloxy)ethylphosphorylcholine]-coated iron oxide nanoparticles: synthesis, colloidal stability and evaluation for stem cell labelling
- DOI:10.1039/c2cc34420c
- 发表时间:2012-01-01
- 期刊:
- 影响因子:4.9
- 作者:Peacock, Anita K.;Cauet, Solene I.;Rosseinsky, Matthew J.
- 通讯作者:Rosseinsky, Matthew J.
SPIONs for cell labelling and tracking using MRI: magnetite or maghemite?
- DOI:10.1039/c7bm00515f
- 发表时间:2017-12-19
- 期刊:
- 影响因子:6.6
- 作者:Barrow M;Taylor A;Fuentes-Caparrós AM;Sharkey J;Daniels LM;Mandal P;Park BK;Murray P;Rosseinsky MJ;Adams DJ
- 通讯作者:Adams DJ
MS-1 magA: Revisiting Its Efficacy as a Reporter Gene for MRI.
- DOI:10.1177/1536012116641533
- 发表时间:2016
- 期刊:
- 影响因子:2.8
- 作者:Pereira SM;Williams SR;Murray P;Taylor A
- 通讯作者:Taylor A
Nanoparticles for imaging, sensing, and therapeutic intervention.
- DOI:10.1021/nn500962q
- 发表时间:2014-04-22
- 期刊:
- 影响因子:17.1
- 作者:Bogart, Lara K.;Pourroy, Genevieve;Murphy, Catherine J.;Puntes, Victor;Pellegrino, Teresa;Rosenblum, Daniel;Peer, Dan;Levy, Raphael
- 通讯作者:Levy, Raphael
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Rosseinsky其他文献
Matthew Rosseinsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Rosseinsky', 18)}}的其他基金
Conformational control of the structure and properties of synthetic porous materials
合成多孔材料结构和性能的构象控制
- 批准号:
EP/W036673/1 - 财政年份:2023
- 资助金额:
$ 197.21万 - 项目类别:
Research Grant
Digital navigation of chemical space for function
功能化学空间的数字导航
- 批准号:
EP/V026887/1 - 财政年份:2021
- 资助金额:
$ 197.21万 - 项目类别:
Research Grant
Cleaner Futures (Next-Generation Sustainable Materials for Consumer Products).
更清洁的未来(消费品的下一代可持续材料)。
- 批准号:
EP/V038117/1 - 财政年份:2021
- 资助金额:
$ 197.21万 - 项目类别:
Research Grant
Chemistry of open-shell correlated materials based on unsaturated hydrocarbons
基于不饱和烃的开壳层相关材料的化学
- 批准号:
EP/S026339/1 - 财政年份:2019
- 资助金额:
$ 197.21万 - 项目类别:
Research Grant
Chemical control of function beyond the unit cell for new electroceramic materials
新型电陶瓷材料超越晶胞功能的化学控制
- 批准号:
EP/R011753/1 - 财政年份:2018
- 资助金额:
$ 197.21万 - 项目类别:
Research Grant
Flexible Routes to Liquid Fuels from CO2 by Advanced Catalysis and Engineering
通过先进的催化和工程将二氧化碳转化为液体燃料的灵活途径
- 批准号:
EP/N010531/1 - 财政年份:2016
- 资助金额:
$ 197.21万 - 项目类别:
Research Grant
New Directions in Molecular Superconductivity
分子超导的新方向
- 批准号:
EP/K027255/2 - 财政年份:2015
- 资助金额:
$ 197.21万 - 项目类别:
Research Grant
Integration of Computation and Experiment for Accelerated Materials Discovery
计算与实验相结合,加速材料发现
- 批准号:
EP/N004884/1 - 财政年份:2015
- 资助金额:
$ 197.21万 - 项目类别:
Research Grant
New Directions in Molecular Superconductivity
分子超导的新方向
- 批准号:
EP/K027212/1 - 财政年份:2013
- 资助金额:
$ 197.21万 - 项目类别:
Research Grant
相似国自然基金
慢性炎症诱发骨丢失的机制及外泌体靶向治疗策略研究
- 批准号:82370889
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
基于再生运动神经路径优化Agrin作用促进损伤神经靶向投射的功能研究
- 批准号:82371373
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
小脑浦肯野细胞突触异常在特发性震颤中的作用机制及靶向干预研究
- 批准号:82371248
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
SAMMSON-CARF-p53信号轴调控黑色素瘤适应性耐药的机制研究
- 批准号:32000541
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Tousled like kinase介导青光眼中视网膜神经节细胞死亡的作用和机制
- 批准号:32000518
- 批准年份:2020
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
CDKL3在肾细胞癌中功能与分子机制的研究及小分子抑制剂的合成与表征
- 批准号:31970721
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
铁氧还蛋白还原酶FDXR促进雌激素受体阳性乳腺癌内分泌治疗耐药的分子机制研究
- 批准号:31970737
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
SIRT1调控突变型p53肿瘤细胞死亡的分子机制研究
- 批准号:31970689
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
柳枝稷miR156-targeted PvSPLs调控木质素合成的分子机制研究
- 批准号:31701496
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
miR156-targeted PvSPL转录因子调控柳枝稷分蘖发育的分子机制
- 批准号:31672479
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Multifunctional nanomedicine prototypes acting as prophylactics and virus-assisted targeted drug delivery vehicle (NANOPROV)
作为预防剂和病毒辅助靶向药物输送载体的多功能纳米药物原型(NANOPROV)
- 批准号:
MR/Y50337X/1 - 财政年份:2024
- 资助金额:
$ 197.21万 - 项目类别:
Research Grant
STTR Phase I: Multifunctional Lipid Nanoparticle Delivery System for Targeted Delivery of Vascular RNA Therapeutics
STTR 第一期:用于血管 RNA 治疗靶向递送的多功能脂质纳米颗粒递送系统
- 批准号:
2309031 - 财政年份:2023
- 资助金额:
$ 197.21万 - 项目类别:
Standard Grant
A Convergent Bioengineered Platform for Multifunctional Therapeutic Exosomes
多功能治疗性外泌体的融合生物工程平台
- 批准号:
10713513 - 财政年份:2023
- 资助金额:
$ 197.21万 - 项目类别:
Multifunctional Biodegradable Zwitterionic Polymer-Drug Conjugates for Multidrug Co-Delivery
用于多药联合递送的多功能可生物降解两性离子聚合物-药物缀合物
- 批准号:
10638101 - 财政年份:2023
- 资助金额:
$ 197.21万 - 项目类别:
Multifunctional Nanotechnology Platform for Triple Negative Breast Cancer Treatment
用于三阴性乳腺癌治疗的多功能纳米技术平台
- 批准号:
10411148 - 财政年份:2022
- 资助金额:
$ 197.21万 - 项目类别:
Multifunctional Nanotechnology Platform for Triple Negative Breast Cancer Treatment
用于三阴性乳腺癌治疗的多功能纳米技术平台
- 批准号:
10672232 - 财政年份:2022
- 资助金额:
$ 197.21万 - 项目类别:
Overcoming Breast Cancer Therapeutic Resistance by Multifunctional RNA Nanoparticles
通过多功能RNA纳米颗粒克服乳腺癌治疗耐药性
- 批准号:
10600748 - 财政年份:2022
- 资助金额:
$ 197.21万 - 项目类别:
Development of a Multifunctional Rehabilitation Standing and Stepping Device for Persons with Parkinson's Disease
帕金森病患者多功能康复站立踏步器的研制
- 批准号:
10546077 - 财政年份:2022
- 资助金额:
$ 197.21万 - 项目类别:
The development of a multifunctional nanoenzyme for AD treatment
用于AD治疗的多功能纳米酶的开发
- 批准号:
10611675 - 财政年份:2022
- 资助金额:
$ 197.21万 - 项目类别:
Overcoming Breast Cancer Therapeutic Resistance by Multifunctional RNA Nanoparticles
通过多功能RNA纳米颗粒克服乳腺癌治疗耐药性
- 批准号:
10771651 - 财政年份:2022
- 资助金额:
$ 197.21万 - 项目类别:














{{item.name}}会员




