Chemical control of function beyond the unit cell for new electroceramic materials
新型电陶瓷材料超越晶胞功能的化学控制
基本信息
- 批准号:EP/R011753/1
- 负责人:
- 金额:$ 94.61万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Discovery and development of advanced materials requires understanding and control of the relationship between composition, structure and function. In crystalline materials, there is considerable focus on a design process that is informed by a single macroscopic structure defined by the average crystallographic unit cell determined by Bragg diffraction. This is a powerful approach, but it has become increasingly apparent that local chemical and positional deviations from this long-range average view of the structure can have decisive effects even in crystalline systems. Charge stripes in the high temperature superconductors and the role of "panoscopic" order spanning meso- to nano-scopic length scales in thermoelectric performance are just two examples of the limitations of average structure considerations in explaining how an apparently small compositional change can transform functional behaviour. This in turn restricts the utility of such a view of structure in designing new materials with enhanced performance.This is particularly critical for the many functional materials in which modulation or switching of a ferroic order parameter (i.e., polarization or magnetization) by a stimulus such as an applied field produces the property (e.g., piezoelectricity or magnetoresistance) used in devices (e.g., actuators or data storage). Their properties are optimised by formation of solid solutions e.g., in PbZrO3-PbTiO3 (PZT), responsible for >90% of piezoelectric devices, the Zr/Ti ratio is adjusted to coincide with the boundary between rhombohedral and tetragonal symmetries, at which the piezoelectric charge coefficient maximizes. There is competition between the randomising effect of the local configuration of Zr and Ti cations (which occupy the same position in the average unit cell, but locally exert quite different influences on the displacements producing the polarisation) and the effect of the long-range dipolar and elastic interactions favouring the average polarisation direction. This local structure effect and the finite size correlations it produces exerts decisive control of function that is invisible from the average structure central to traditional design. The properties of the solid solutions are thus not an average of the end members, and simple design rules do not exist. The project team have recently shown how design based on quantitative local structure analysis can afford materials families with important properties that had not been accessed by classical average structure design approaches. Using nanoscale information from total Bragg scattering studies to control properties, they identified chemistry that would have been disregarded based on the average structure but led to a new lead-free piezoelectric family (Advanced Materials 2015) and then to the first bulk room temperature ferromagnetic ferroelectric multiferroic (Nature 2015): combination of these two long range orders in a single phase has been a longstanding scientific challenge.This project will develop the control of function by understanding and manipulating symmetry and structure beyond the unit cell length scale. We will build a toolkit that enables this approach by combining solid state materials chemistry, materials science and condensed matter physics to integrate synthesis, crystal chemistry, crystallography, local structure analysis, scanning probe microscopy, magnetism, electroceramic measurement physics, and materials processing. The toolkit exploits the synergies between the skills of the two participating groups.By designing then preparing new piezoelectric and multiferroic materials, we will demonstrate how this approach can guide synthesis for function, with ramifications for control of properties beyond the exemplar areas studied, for example in heterogeneous catalyst and electrode (fuel cell, battery) materials, contributing to the EPSRC Physical Sciences Grand Challenge of Nanoscale Design of Functional Materials.
先进材料的发现和开发需要理解和控制组成,结构和功能之间的关系。在晶体材料中,人们非常关注由布拉格衍射确定的平均晶体学晶胞定义的单一宏观结构所决定的设计过程。这是一种强有力的方法,但越来越明显的是,即使在晶体系统中,局部化学和位置偏离这种长程平均结构也会产生决定性的影响。高温超导体中的电荷条纹和热电性能中从介观到纳米尺度的“泛观”顺序的作用只是平均结构考虑的局限性的两个例子,可以解释一个明显的小组成变化如何改变功能行为。这反过来又限制了这种结构观点在设计具有增强性能的新材料中的实用性。这对于许多功能材料特别关键,其中铁电序参数(即,极化或磁化)产生该特性(例如,压电或磁阻)用于器件(例如,致动器或数据存储器)。它们的性质通过形成固溶体而优化,在PbZrO 3-PbTiO 3(PZT)中,负责>90%的压电器件,调节Zr/Ti比以与菱形和四面体对称性之间的边界一致,在该边界处压电电荷系数最大化。Zr和Ti阳离子(在平均晶胞中占据相同位置,但局部对产生极化的位移产生完全不同的影响)的局部配置的随机化效应与有利于平均极化方向的长程偶极和弹性相互作用的效应之间存在竞争。这种局部结构效应及其产生的有限尺寸相关性对功能施加了决定性的控制,这是传统设计的平均结构中心所看不到的。固溶体的性质因此不是端元的平均值,并且不存在简单的设计规则。项目团队最近展示了基于定量局部结构分析的设计如何能够提供具有经典平均结构设计方法无法获得的重要特性的材料族。利用来自总布拉格散射研究的纳米级信息来控制性能,他们确定了基于平均结构而被忽略的化学,但导致了新的无铅压电家族(Advanced Materials 2015),然后到第一块室温铁磁铁电多铁性(Nature 2015):将这两种长程有序结合在一个相态中一直是一个长期的科学挑战。这个项目将通过理解和操纵单位细胞之外的对称性和结构来发展功能的控制长度比例我们将建立一个工具包,使这种方法相结合的固态材料化学,材料科学和凝聚态物理集成合成,晶体化学,晶体学,局部结构分析,扫描探针显微镜,磁学,电子陶瓷测量物理和材料加工。该工具包利用了两个参与小组的技能之间的协同作用。通过设计然后制备新的压电和多铁性材料,我们将展示这种方法如何指导功能合成,以及控制所研究的示例领域之外的性能的分支,例如多相催化剂和电极(燃料电池,电池)材料,有助于EPSRC物理科学大挑战的纳米级设计的功能材料。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Complex Structural Disorder in a Polar Orthorhombic Perovskite Observed through the Maximum Entropy Method/Rietveld Technique
通过最大熵法/Rietveld 技术观察极性正交钙钛矿中的复杂结构无序
- DOI:10.1021/acs.chemmater.1c01979
- 发表时间:2021
- 期刊:
- 影响因子:8.6
- 作者:Manjón-Sanz A
- 通讯作者:Manjón-Sanz A
Expanding multiple anion superlattice chemistry: Synthesis, structure and properties of Bi4O4SeBr2 and Bi6O6Se2Cl2
- DOI:10.1016/j.jssc.2022.123246
- 发表时间:2022-05-26
- 期刊:
- 影响因子:3.3
- 作者:Gibson, Q. D.;Newnham, J. A.;Rosseinsky, M. J.
- 通讯作者:Rosseinsky, M. J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Rosseinsky其他文献
Matthew Rosseinsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Rosseinsky', 18)}}的其他基金
Conformational control of the structure and properties of synthetic porous materials
合成多孔材料结构和性能的构象控制
- 批准号:
EP/W036673/1 - 财政年份:2023
- 资助金额:
$ 94.61万 - 项目类别:
Research Grant
Digital navigation of chemical space for function
功能化学空间的数字导航
- 批准号:
EP/V026887/1 - 财政年份:2021
- 资助金额:
$ 94.61万 - 项目类别:
Research Grant
Cleaner Futures (Next-Generation Sustainable Materials for Consumer Products).
更清洁的未来(消费品的下一代可持续材料)。
- 批准号:
EP/V038117/1 - 财政年份:2021
- 资助金额:
$ 94.61万 - 项目类别:
Research Grant
Chemistry of open-shell correlated materials based on unsaturated hydrocarbons
基于不饱和烃的开壳层相关材料的化学
- 批准号:
EP/S026339/1 - 财政年份:2019
- 资助金额:
$ 94.61万 - 项目类别:
Research Grant
Flexible Routes to Liquid Fuels from CO2 by Advanced Catalysis and Engineering
通过先进的催化和工程将二氧化碳转化为液体燃料的灵活途径
- 批准号:
EP/N010531/1 - 财政年份:2016
- 资助金额:
$ 94.61万 - 项目类别:
Research Grant
New Directions in Molecular Superconductivity
分子超导的新方向
- 批准号:
EP/K027255/2 - 财政年份:2015
- 资助金额:
$ 94.61万 - 项目类别:
Research Grant
Integration of Computation and Experiment for Accelerated Materials Discovery
计算与实验相结合,加速材料发现
- 批准号:
EP/N004884/1 - 财政年份:2015
- 资助金额:
$ 94.61万 - 项目类别:
Research Grant
New Directions in Molecular Superconductivity
分子超导的新方向
- 批准号:
EP/K027212/1 - 财政年份:2013
- 资助金额:
$ 94.61万 - 项目类别:
Research Grant
Ultrastable targeted multifunctional hybrid nanomaterials for long-term stem cell tracking
用于长期干细胞追踪的超稳定靶向多功能混合纳米材料
- 批准号:
EP/H046143/1 - 财政年份:2010
- 资助金额:
$ 94.61万 - 项目类别:
Research Grant
相似国自然基金
Pt/碲化物亲氧性调控助力醇类燃料电氧化的研究
- 批准号:22302168
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
Lagrange网络实用同步的不连续控制研究
- 批准号:61603174
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
职业因素致慢性肌肉骨骼损伤模型及防控研究
- 批准号:81172643
- 批准年份:2011
- 资助金额:50.0 万元
- 项目类别:面上项目
呼吸中枢低氧通气反应的遗传机制及其对睡眠呼吸障碍的影响
- 批准号:81070069
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
动态无线传感器网络弹性化容错组网技术与传输机制研究
- 批准号:61001096
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
超临界机翼激波三维鼓包控制机理及参数优化研究
- 批准号:10972233
- 批准年份:2009
- 资助金额:36.0 万元
- 项目类别:面上项目
中枢钠氢交换蛋白3在睡眠呼吸暂停呼吸控制稳定性中的作用和调控机制
- 批准号:30900646
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
低辐射空间环境下商用多核处理器层次化软件容错技术研究
- 批准号:90818016
- 批准年份:2008
- 资助金额:50.0 万元
- 项目类别:重大研究计划
相似海外基金
Chemical Genetic Dissection of SWI/SNF Chromatin Remodeling Complex Functions in Cerebral Cortex Development
大脑皮层发育中 SWI/SNF 染色质重塑复杂功能的化学遗传学解析
- 批准号:
10660367 - 财政年份:2023
- 资助金额:
$ 94.61万 - 项目类别:
Interactions of Environmental Chemical Mixtures, Genetics, and Immune Pathways in Autism Spectrum Disorder
自闭症谱系障碍中环境化学混合物、遗传学和免疫途径的相互作用
- 批准号:
10806422 - 财政年份:2023
- 资助金额:
$ 94.61万 - 项目类别:
Multispectral Sensor for Chemical Composition Analysis of Ultrafine Aerosols in Air Quality Assessment
用于空气质量评估中超细气溶胶化学成分分析的多光谱传感器
- 批准号:
10546675 - 财政年份:2022
- 资助金额:
$ 94.61万 - 项目类别:
Interactions of Environmental Chemical Mixtures, Genetics, and Immune Pathways in Autism Spectrum Disorder
自闭症谱系障碍中环境化学混合物、遗传学和免疫途径的相互作用
- 批准号:
10366050 - 财政年份:2021
- 资助金额:
$ 94.61万 - 项目类别:
Analysis of chemical modulators for corneal endothelial dystrophies
角膜内皮营养不良的化学调节剂分析
- 批准号:
10487504 - 财政年份:2021
- 资助金额:
$ 94.61万 - 项目类别:
Analysis of chemical modulators for corneal endothelial dystrophies
角膜内皮营养不良的化学调节剂分析
- 批准号:
10661788 - 财政年份:2021
- 资助金额:
$ 94.61万 - 项目类别:
Analysis of chemical modulators for corneal endothelial dystrophies
角膜内皮营养不良的化学调节剂分析
- 批准号:
10304787 - 财政年份:2021
- 资助金额:
$ 94.61万 - 项目类别:
Exploiting Diversity-Oriented Chemical Synthesis for Combating Chronic Parasitic Infection
利用面向多样性的化学合成来对抗慢性寄生虫感染
- 批准号:
10324549 - 财政年份:2020
- 资助金额:
$ 94.61万 - 项目类别:
Exploiting Diversity-Oriented Chemical Synthesis for Combating Chronic Parasitic Infection
利用面向多样性的化学合成来对抗慢性寄生虫感染
- 批准号:
10548119 - 财政年份:2020
- 资助金额:
$ 94.61万 - 项目类别: