Integration of Computation and Experiment for Accelerated Materials Discovery
计算与实验相结合,加速材料发现
基本信息
- 批准号:EP/N004884/1
- 负责人:
- 金额:$ 847.42万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Society faces major challenges that require disruptive new materials solutions. For example, there is a worldwide demand for materials for sustainable energy applications, such as safer new battery technologies or the efficient capture and utilization of solar energy. This project will develop an integrated approach to designing, synthesizing and evaluating new functional materials, which will be developed across organic and inorganic solids, and also hybrids that contain both organic and inorganic modules in a single solid.The UK is well placed to boost its knowledge economy by discovering breakthrough functional materials, but there is intense global completion. Success, and long-term competitiveness, is critically dependent on developing improved capability to create such materials. All technologically advanced nations have programmes that address this challenge, exemplified by the $100 million of initial funding for the US Materials Genome Initiative.The traditional approach to building functional materials, where the properties arise from the placement of the atoms, can be contrasted with large-scale engineering. In engineering, the underpinning Newtonian physics is understood to the point that complex structures, such as bridges, can be constructed with millimetre precision. By contrast, the engineering of functional materials relies on a much less perfect understanding of the relationship between structure and function at the atomic level, and a still limited capability to achieve atomic level precision in synthesis. Hence, the failure rate in new materials synthesis is enormous compared with large-scale engineering, and this requires large numbers of researchers to drive success, placing the UK at a competitive disadvantage compared to larger countries. The current difficulty of materials design at the atomic level also leads to cultural barriers: in building a bridge, the design team would work closely with the engineering construction team throughout the process. By contrast, the direct, day-to-day integration of theory and synthesis to identify new materials is not common practice, despite impressive advances in the ability of computation to tackle more complex systems. This is a fundamental challenge in materials research.This Programme Grant will tackle the challenge by delivering the daily working-level integration of computation and experiment to discover new materials, driven by a closely interacting team of specialists in structure and property prediction, measurement and materials synthesis. Key to this will be unique methods developed by our team that led to recent landmark publications in Science and Nature. We are therefore internationally well placed to deliver this timely vision.Our approach will enable discovery of functional materials on a much faster timescale. It will have broad scope, because we will develop it across materials types with a range of targeted properties. It will have disruptive impact because it uses chemical understanding and experiment in tandem with calculations that directly exploit chemical knowledge. In the longer term, the approach will enable a wide range of academic and industrial communities in chemistry and also in physics and engineering, where there is often a keener understanding of the properties required for applications, to design better materials. This approach will lead to new materials, such as battery electrolytes, materials for information storage, and photocatalysts for solar energy conversion, that are important societal and commercial targets in their own right.We will exploit discoveries and share the approach with our commercial partners via the Knowledge Centre for Materials Chemistry and the new Materials Innovation Factory, a £68 million UK capital investment in state-of-the-art materials research facilities for both academic and industrial users. Industry and the Universities commit 55% of the project cost.
社会面临重大挑战,需要颠覆性的新材料解决方案。例如,全世界都需要可持续能源应用的材料,如更安全的新电池技术或有效捕获和利用太阳能。该项目将开发一种设计、合成和评估新功能材料的综合方法,该方法将在有机和无机固体以及在单一固体中包含有机和无机模块的混合物中开发。英国处于通过发现突破性功能材料来促进其知识经济的有利地位,但全球范围内的完成度很高。成功和长期竞争力关键取决于开发更好的制造这种材料的能力。所有技术先进的国家都有应对这一挑战的计划,例如美国材料基因组计划的1亿美元初始资金。构建功能材料的传统方法(其性质由原子的位置产生)可以与大规模工程形成鲜明对比。在工程学中,牛顿物理学的基础被理解为复杂的结构,如桥梁,可以以毫米的精度建造。相比之下,功能材料的工程设计依赖于对原子水平上结构和功能之间关系的不那么完美的理解,并且在合成中实现原子水平精度的能力仍然有限。因此,与大规模工程相比,新材料合成的失败率是巨大的,这需要大量的研究人员来推动成功,使英国与大国相比处于竞争劣势。目前在原子水平上进行材料设计的困难也导致了文化障碍:在建造桥梁时,设计团队将在整个过程中与工程施工团队密切合作。相比之下,直接的,日常的理论和综合集成,以确定新材料是不常见的做法,尽管在计算能力,以处理更复杂的系统令人印象深刻的进步。这是材料研究中的一个基本挑战。该计划资助将通过提供日常工作水平的计算和实验集成来解决这一挑战,以发现新材料,由结构和性能预测,测量和材料合成方面的专家团队密切合作。这一点的关键将是我们团队开发的独特方法,这些方法导致了最近在《科学》和《自然》杂志上发表的具有里程碑意义的论文。因此,我们在国际上处于有利地位,能够及时实现这一愿景。我们的方法将使功能材料的发现在更快的时间尺度上。它将具有广泛的范围,因为我们将开发具有一系列目标属性的材料类型。它将产生破坏性的影响,因为它将化学理解和实验与直接利用化学知识的计算结合起来。从长远来看,这种方法将使化学、物理和工程领域的广泛学术和工业界能够设计出更好的材料,因为这些领域通常对应用所需的性能有更敏锐的理解。这种方法将导致新材料的产生,如电池电解质、信息存储材料和太阳能转换光催化剂,这些材料本身就是重要的社会和商业目标。我们将利用发现,并通过材料化学知识中心和新材料创新工厂与我们的商业伙伴分享这种方法。6800万英镑的英国资本投资,用于为学术和工业用户提供最先进的材料研究设施。工业和大学承担项目成本的55%。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inducing Social Self-Sorting in Organic Cages To Tune The Shape of The Internal Cavity.
- DOI:10.1002/anie.202007571
- 发表时间:2020-09-14
- 期刊:
- 影响因子:0
- 作者:Abet V;Szczypiński FT;Little MA;Santolini V;Jones CD;Evans R;Wilson C;Wu X;Thorne MF;Bennison MJ;Cui P;Cooper AI;Jelfs KE;Slater AG
- 通讯作者:Slater AG
Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded framework
- DOI:10.26434/chemrxiv.11341850.v1
- 发表时间:2019-12
- 期刊:
- 影响因子:11.9
- 作者:Catherine M. Aitchison;Christopher M. Kane;D. McMahon;Peter R. Spackman;A. Pulido;Xiaoyan Wang;L. Wilbr
- 通讯作者:Catherine M. Aitchison;Christopher M. Kane;D. McMahon;Peter R. Spackman;A. Pulido;Xiaoyan Wang;L. Wilbr
Complex Phase Behaviour and Structural Transformations of Metal-Organic Frameworks with Mixed Rigid and Flexible Bridging Ligands.
- DOI:10.1002/chem.201805028
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:H. D. Arkawazi;Rob Clowes;A. Cooper;T. Konno;Naoto Kuwamura;C. Pask;M. Hardie
- 通讯作者:H. D. Arkawazi;Rob Clowes;A. Cooper;T. Konno;Naoto Kuwamura;C. Pask;M. Hardie
Photocatalytic overall water splitting under visible light enabled by a particulate conjugated polymer loaded with iridium
由负载铱的颗粒共轭聚合物实现可见光下光催化整体水分解
- DOI:10.26434/chemrxiv-2022-8vr18
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Bai Y
- 通讯作者:Bai Y
Structure-activity relationships in well-defined conjugated oligomer photocatalysts for hydrogen production from water
- DOI:10.1039/d0sc02675a
- 发表时间:2020-09-07
- 期刊:
- 影响因子:8.4
- 作者:Aitchison, Catherine M.;Sachs, Michael;Cooper, Andrew, I
- 通讯作者:Cooper, Andrew, I
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Rosseinsky其他文献
Matthew Rosseinsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Rosseinsky', 18)}}的其他基金
Conformational control of the structure and properties of synthetic porous materials
合成多孔材料结构和性能的构象控制
- 批准号:
EP/W036673/1 - 财政年份:2023
- 资助金额:
$ 847.42万 - 项目类别:
Research Grant
Digital navigation of chemical space for function
功能化学空间的数字导航
- 批准号:
EP/V026887/1 - 财政年份:2021
- 资助金额:
$ 847.42万 - 项目类别:
Research Grant
Cleaner Futures (Next-Generation Sustainable Materials for Consumer Products).
更清洁的未来(消费品的下一代可持续材料)。
- 批准号:
EP/V038117/1 - 财政年份:2021
- 资助金额:
$ 847.42万 - 项目类别:
Research Grant
Chemistry of open-shell correlated materials based on unsaturated hydrocarbons
基于不饱和烃的开壳层相关材料的化学
- 批准号:
EP/S026339/1 - 财政年份:2019
- 资助金额:
$ 847.42万 - 项目类别:
Research Grant
Chemical control of function beyond the unit cell for new electroceramic materials
新型电陶瓷材料超越晶胞功能的化学控制
- 批准号:
EP/R011753/1 - 财政年份:2018
- 资助金额:
$ 847.42万 - 项目类别:
Research Grant
Flexible Routes to Liquid Fuels from CO2 by Advanced Catalysis and Engineering
通过先进的催化和工程将二氧化碳转化为液体燃料的灵活途径
- 批准号:
EP/N010531/1 - 财政年份:2016
- 资助金额:
$ 847.42万 - 项目类别:
Research Grant
New Directions in Molecular Superconductivity
分子超导的新方向
- 批准号:
EP/K027255/2 - 财政年份:2015
- 资助金额:
$ 847.42万 - 项目类别:
Research Grant
New Directions in Molecular Superconductivity
分子超导的新方向
- 批准号:
EP/K027212/1 - 财政年份:2013
- 资助金额:
$ 847.42万 - 项目类别:
Research Grant
Ultrastable targeted multifunctional hybrid nanomaterials for long-term stem cell tracking
用于长期干细胞追踪的超稳定靶向多功能混合纳米材料
- 批准号:
EP/H046143/1 - 财政年份:2010
- 资助金额:
$ 847.42万 - 项目类别:
Research Grant
相似国自然基金
基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
- 批准号:81903416
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
- 批准号:
EP/Y00244X/1 - 财政年份:2024
- 资助金额:
$ 847.42万 - 项目类别:
Research Grant
REU Site: Integration of Chemical Theory, Computation and Experiment at Duquesne University
REU 网站:杜肯大学化学理论、计算和实验的整合
- 批准号:
2244151 - 财政年份:2023
- 资助金额:
$ 847.42万 - 项目类别:
Standard Grant
REU Site: Undergraduate Research Integrating Computation and Experiment to Create Revolutionary Materials
REU 网站:本科生研究结合计算和实验来创造革命性材料
- 批准号:
2244331 - 财政年份:2023
- 资助金额:
$ 847.42万 - 项目类别:
Standard Grant
Quantitative Molecular Dynamics of Extremophile Metalloproteins -- Combining Experiment and Computation
极端微生物金属蛋白的定量分子动力学——实验与计算相结合
- 批准号:
2149122 - 财政年份:2022
- 资助金额:
$ 847.42万 - 项目类别:
Standard Grant
Molecular Balances: Computation meets Experiment
分子平衡:计算与实验的结合
- 批准号:
2857406 - 财政年份:2022
- 资助金额:
$ 847.42万 - 项目类别:
Studentship
Opportunities in Experiment, Computation, Theory and AI Virtual July 2021 Workshop with Focus on Metals and Alloys
2021 年 7 月实验、计算、理论和人工智能虚拟研讨会机会,重点关注金属和合金
- 批准号:
2132475 - 财政年份:2021
- 资助金额:
$ 847.42万 - 项目类别:
Standard Grant
Prediction, modelling and characterisation of unconventional superconductors at the interplay between computation and experiment.
通过计算和实验的相互作用对非常规超导体进行预测、建模和表征。
- 批准号:
2606456 - 财政年份:2021
- 资助金额:
$ 847.42万 - 项目类别:
Studentship
REU Site: Undergraduate Research Integrating Computation and Experiment to Create Revolutionary Materials
REU 网站:本科生研究结合计算和实验来创造革命性材料
- 批准号:
1950924 - 财政年份:2020
- 资助金额:
$ 847.42万 - 项目类别:
Standard Grant
Merging Computation and Experiment to Understand and Develop Asymmetric Open-Shell Radical Cross- Couplings
结合计算和实验来理解和开发非对称开壳径向交叉耦合
- 批准号:
10580445 - 财政年份:2020
- 资助金额:
$ 847.42万 - 项目类别:
Reverse engineering methods for elucidating the molecular assembly mechanisms of thermoresponsive peptide-based conjugates: computation and experiment
阐明温敏肽缀合物分子组装机制的逆向工程方法:计算和实验
- 批准号:
2023668 - 财政年份:2020
- 资助金额:
$ 847.42万 - 项目类别:
Standard Grant














{{item.name}}会员




