Chemistry of open-shell correlated materials based on unsaturated hydrocarbons

基于不饱和烃的开壳层相关材料的化学

基本信息

  • 批准号:
    EP/S026339/1
  • 负责人:
  • 金额:
    $ 97.25万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

This is a long-range basic research project that targets the synthesis of a new crystalline materials family whose chemical, electronic and magnetic properties will create opportunities in fundamental science. To date, such advances have mainly been made in inorganic materials. This project will extend that opportunity to materials where the electronically active component is an organic anion.Our understanding of materials such as silicon and copper relies on a description of the electrons in which they do not interact strongly with each other. The electronic behaviour of materials in which the electrons do interact strongly, known as correlated materials, differs from such classical free electron materials. Correlated materials have been a fruitful source of new electronic and magnetic ground states and properties. This behaviour has overwhelmingly been observed in inorganic systems, because of the capability offered by inorganic solid state materials chemistry to position multiple distinct metal cations and thus predictably arrange spins, orbitals and charges. We have no such synthetic capability or crystal chemical understanding for organic correlated electron materials. The one example of success is the fulleride superconductors such as K3C60, where the underlying crystal chemistry is based on sphere packing that is directly analogous to well-studied inorganic systems, enabling extensive synthetic control and property design.While currently offering an outstanding range of properties, all-inorganic systems are restricted to the atoms provided by the periodic table, whose crystal and electronic structures are controlled by the ionic size and orbital characteristics of those elements. If we could achieve similar general control of structures based on electronically active organic species, such as anions derived by reduction of unsaturated molecules studied here, the resulting structural and electronic properties would be determined by the molecular size, shape and electronic structure. In contrast to the inorganic ionic systems, these steric and electronic structures of the organic molecules that would be the building blocks of such materials are controllable by synthetic chemistry.In two recent papers in Nature Chemistry, we have reported chemical synthesis approaches that produce crystalline salts of reduced unsaturated aromatic molecules and access new electronic states, including a candidate for the quantum spin liquid ground state in a three-dimensional pi-electron based material. This advance demonstrates the potential to create a family of tuneable crystalline organic electronic materials beyond the fullerides. The project will establish this family, allowing the positioning of electronically and sterically tuneable building blocks to control electronic, magnetic, optical and charge storage properties.This will be achieved by developing the synthetic chemistry capability to produce crystalline materials from a broad range of unsaturated organic molecules. To generate materials of comparable compositional and structural complexity to the inorganic systems, we will apply and expand this chemistry to materials with multiple metal sites and with more than one molecular component. This will allow us to control extended electronic structure by positioning of and charge transfer between the molecular units to target geometrically frustrated magnetic lattices and mobile charges in quantum spin liquids as examples of the new electronic ground states this chemistry will enable. The compositions, charge states and structures of the resulting hydrocarbon salts will reveal the charge storage potential of this family of materials.We will use informatics techniques to guide efficient exploration of the chemical space, and apply a range of structural, thermodynamic, spectroscopic, electronic and magnetic measurement techniques with our international collaborators to identify the new electronic states that arise.
这是一个长期的基础研究项目,目标是合成一种新的晶体材料家族,其化学,电子和磁性特性将为基础科学创造机会。迄今为止,这些进展主要是在无机材料中取得的。该项目将把这个机会扩展到电子活性成分是有机阴离子的材料。我们对硅和铜等材料的理解依赖于对电子的描述,其中它们不会相互作用。其中电子确实强烈相互作用的材料的电子行为,称为相关材料,不同于这种经典的自由电子材料。相关材料是新的电子和磁性基态和性质的富有成效的来源。这种行为在无机系统中已经被压倒性地观察到,因为无机固态材料化学提供的定位多个不同金属阳离子的能力,从而可预测地排列自旋、轨道和电荷。对于有机相关电子材料,我们没有这样的合成能力和晶体化学理解。一个成功的例子是富勒烯超导体,如K3C60,其基础晶体化学是基于球形堆积,直接类似于研究充分的无机系统,能够进行广泛的合成控制和性能设计。虽然目前提供了一系列出色的性能,但全无机系统仅限于周期表提供的原子,其晶体和电子结构由这些元素的离子尺寸和轨道特性控制。如果我们可以实现类似的一般控制的结构的基础上的电子活性的有机物种,如阴离子通过还原不饱和分子在这里研究,所得到的结构和电子性质将由分子的大小,形状和电子结构。与无机离子体系相比,这些有机分子的空间和电子结构可以通过合成化学来控制,这些有机分子将成为此类材料的构建单元。在《自然化学》杂志最近的两篇论文中,我们报道了化学合成方法,这些方法可以产生还原的不饱和芳香分子的结晶盐,并获得新的电子状态,包括三维π电子基材料中的量子自旋液体基态的候选者。这一进展表明,有可能创造一个家庭的可调晶体有机电子材料以外的富勒烯。该项目将建立这个系列,允许电子和空间可调的构建块的定位,以控制电子,磁性,光学和电荷存储特性。这将通过开发合成化学能力来实现,从广泛的不饱和有机分子中生产晶体材料。为了生成与无机系统的组成和结构复杂性相当的材料,我们将应用并扩展这种化学方法到具有多个金属位点和多个分子组分的材料。这将使我们能够通过定位和分子单元之间的电荷转移来控制扩展的电子结构,以靶向量子自旋液体中的几何受抑磁晶格和移动的电荷,作为这种化学将实现的新电子基态的例子。我们将利用信息学技术指导对化学空间的有效探索,并与国际合作者一起应用一系列结构、热力学、光谱、电子和磁性测量技术来识别出现的新电子态。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-Throughput Discovery of a Rhombohedral Twelve-Connected Zirconium-Based Metal-Organic Framework with Ordered Terephthalate and Fumarate Linkers.
  • DOI:
    10.1002/anie.202108150
  • 发表时间:
    2021-12-20
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Tollitt, Adam M.;Vismara, Rebecca;Daniels, Luke M.;Antypov, Dmytro;Gaultois, Michael W.;Katsoulidis, Alexandros P.;Rosseinsky, Matthew J.
  • 通讯作者:
    Rosseinsky, Matthew J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Rosseinsky其他文献

Matthew Rosseinsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Rosseinsky', 18)}}的其他基金

Conformational control of the structure and properties of synthetic porous materials
合成多孔材料结构和性能的构象控制
  • 批准号:
    EP/W036673/1
  • 财政年份:
    2023
  • 资助金额:
    $ 97.25万
  • 项目类别:
    Research Grant
Digital navigation of chemical space for function
功能化学空间的数字导航
  • 批准号:
    EP/V026887/1
  • 财政年份:
    2021
  • 资助金额:
    $ 97.25万
  • 项目类别:
    Research Grant
Cleaner Futures (Next-Generation Sustainable Materials for Consumer Products).
更清洁的未来(消费品的下一代可持续材料)。
  • 批准号:
    EP/V038117/1
  • 财政年份:
    2021
  • 资助金额:
    $ 97.25万
  • 项目类别:
    Research Grant
Chemical control of function beyond the unit cell for new electroceramic materials
新型电陶瓷材料超越晶胞功能的化学控制
  • 批准号:
    EP/R011753/1
  • 财政年份:
    2018
  • 资助金额:
    $ 97.25万
  • 项目类别:
    Research Grant
Flexible Routes to Liquid Fuels from CO2 by Advanced Catalysis and Engineering
通过先进的催化和工程将二氧化碳转化为液体燃料的灵活途径
  • 批准号:
    EP/N010531/1
  • 财政年份:
    2016
  • 资助金额:
    $ 97.25万
  • 项目类别:
    Research Grant
New Directions in Molecular Superconductivity
分子超导的新方向
  • 批准号:
    EP/K027255/2
  • 财政年份:
    2015
  • 资助金额:
    $ 97.25万
  • 项目类别:
    Research Grant
Integration of Computation and Experiment for Accelerated Materials Discovery
计算与实验相结合,加速材料发现
  • 批准号:
    EP/N004884/1
  • 财政年份:
    2015
  • 资助金额:
    $ 97.25万
  • 项目类别:
    Research Grant
New Directions in Molecular Superconductivity
分子超导的新方向
  • 批准号:
    EP/K027212/1
  • 财政年份:
    2013
  • 资助金额:
    $ 97.25万
  • 项目类别:
    Research Grant
Adaptable Porous Materials
适应性多孔材料
  • 批准号:
    EP/J008834/1
  • 财政年份:
    2012
  • 资助金额:
    $ 97.25万
  • 项目类别:
    Research Grant
Ultrastable targeted multifunctional hybrid nanomaterials for long-term stem cell tracking
用于长期干细胞追踪的超稳定靶向多功能混合纳米材料
  • 批准号:
    EP/H046143/1
  • 财政年份:
    2010
  • 资助金额:
    $ 97.25万
  • 项目类别:
    Research Grant

相似国自然基金

精子发生中mRNA下游开放阅读框(downstream Open Reading Frame,dORF)的功能研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于升阶谱方法和Open CASCADE的高阶网格自动生成技术研究
  • 批准号:
    11972004
  • 批准年份:
    2019
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
基于OpenXAL的XiPAF装置虚拟加速器研究
  • 批准号:
    11705149
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
有限维代数的导出表示型
  • 批准号:
    11601098
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
三维流形上的切触结构
  • 批准号:
    11471212
  • 批准年份:
    2014
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
星系演化背景下的年轻超大质量星团:悬而未决的难题
  • 批准号:
    11073001
  • 批准年份:
    2010
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
辛几何中的开“格罗莫夫-威腾”不变量
  • 批准号:
    10901084
  • 批准年份:
    2009
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
变分与拓扑方法和Schrodinger方程中的Open 问题
  • 批准号:
    10871109
  • 批准年份:
    2008
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Chemistry of open-shell carbon-based pi-electron molecular materials and development into spin liquids
开壳层碳基π电子分子材料的化学及其自旋液体的发展
  • 批准号:
    21H01907
  • 财政年份:
    2021
  • 资助金额:
    $ 97.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Chemistry of open-shell metal complexes: Tuning spin density distributions between P-ligands and metals
开壳金属配合物的化学:调节 P-配体和金属之间的自旋密度分布
  • 批准号:
    410910747
  • 财政年份:
    2018
  • 资助金额:
    $ 97.25万
  • 项目类别:
    Research Grants
Exploration of New Chemistry of Open Shell Porphyrins
开壳卟啉新化学探索
  • 批准号:
    18H03910
  • 财政年份:
    2018
  • 资助金额:
    $ 97.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Breaking the Curse of Dimension in Actinide Chemistry: Using Relativistic, Open-Shell Geminal Methods to Provide an Efficient and Robust Computational Model for the Electronic Structure of Molecular C
打破锕系化学中的维数诅咒:利用相对论、开壳层双子方法为分子 C 的电子结构提供高效、鲁棒的计算模型
  • 批准号:
    491392-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 97.25万
  • 项目类别:
    Banting Postdoctoral Fellowships Tri-council
Theory and quantum-chemical modeling of open-shell systems (computational chemistry) (Z02)
开壳系统的理论和量子化学建模(计算化学)(Z02)
  • 批准号:
    228622487
  • 财政年份:
    2013
  • 资助金额:
    $ 97.25万
  • 项目类别:
    Collaborative Research Centres
Collaborative Research: Spectroscopy and Chemistry of Open-Shell Atoms in Solid Hydrogen Matrices
合作研究:固体氢基质中开壳原子的光谱学和化学
  • 批准号:
    0848841
  • 财政年份:
    2009
  • 资助金额:
    $ 97.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Spectroscopy and Chemistry of Open-Shell Atoms in Solid Hydrogen Matrices
合作研究:固体氢基质中开壳原子的光谱学和化学
  • 批准号:
    0848330
  • 财政年份:
    2009
  • 资助金额:
    $ 97.25万
  • 项目类别:
    Continuing Grant
Open-shell polynuclear metal complexes in inorganic chemistry
无机化学中的开壳层多核金属配合物
  • 批准号:
    227141-2003
  • 财政年份:
    2005
  • 资助金额:
    $ 97.25万
  • 项目类别:
    Discovery Grants Program - Individual
Open-shell polynuclear metal complexes in inorganic chemistry
无机化学中的开壳层多核金属配合物
  • 批准号:
    227141-2003
  • 财政年份:
    2004
  • 资助金额:
    $ 97.25万
  • 项目类别:
    Discovery Grants Program - Individual
Open-shell polynuclear metal complexes in inorganic chemistry
无机化学中的开壳层多核金属配合物
  • 批准号:
    227141-2003
  • 财政年份:
    2003
  • 资助金额:
    $ 97.25万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了